• Title/Summary/Keyword: agile attitude control

Search Result 18, Processing Time 0.025 seconds

Sliding Mode Attitude Control of Spacecraft Considering Angular Rate Constraints (각속도 제한을 고려한 인공위성의 슬라이딩 모드 자세제어)

  • Kim, Min-young;Jang, Seok-ho;Leeghim, Henzeh
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.2
    • /
    • pp.129-138
    • /
    • 2021
  • Due to the active progress in space programs for various types of ground and space missions, the high agile spacecraft maneuverability is also required. To meet the requirement of the given space missions, the Control Moment Gyros (CMG) for the alternatives of the classical reaction wheels can release the attitude maneuverability restrictions. In addition, the angular rates of the spacecraft is constrained due to the limited actuator characteristics. In this paper, a sliding mode control technique for the attitude control of the spacecraft equipped with the pyramid type of CSCMG(Constant Speed CMG) is designed, and the stability of the control system is guaranteed by using the Lyapunov stability theory. Finally, the control law proposed is analyized by numertical simulations.

Control Moment Gyroscope Torque Measurements Using a Kistler Table for Microsatellite Applications

  • Goo-Hwan Shin;Hyosang Yoon;Hyeongcheol Kim;Dong-Soo Choi;Jae-Suk Lee;Yeong-Ho Shin;EunJi Lee;Sang-sub Park;Seokju Kang
    • Journal of Space Technology and Applications
    • /
    • v.4 no.1
    • /
    • pp.12-26
    • /
    • 2024
  • Attitude control of a satellite is very important to ensure proper for mission performance. Satellites launched in the past had simple missions. However, recently, with the advancement of technology, the tasks to be performed have become more complex. One example relies on a new technology that allows satellites quickly alter their attitude while orbiting in space. Currently, one of the most widely used technologies for satellite attitude control is the reaction wheel. However, the amount of torque generated by reaction wheels is too low to facilitate quick maneuvers by the satellite. One way to overcome this is to implement posture control logic using a control moment gyroscope (CMG). Various types of CMGs have been applied to space systems, and CMGs are currently mounted on large-scale satellites. However, although technological advancements have continued, the market for CMGs applicable to, small satellites remains in its early stages. An ultra-small CMG was developed for use with small satellites weighing less than 200 kg. The ultra-small CMG measured its target performance outcomes using a precision torque-measuring device. The target performance of the CMG, at 800 mNm, was set through an analysis. The final torque of the CMG produced through the design after the analysis was 821mNm, meaning that a target tolerance level of 10% was achieved.

Hybrid Control with Thrusters and Reaction Wheels for Time Optimal Attitude Maneuvers of Spacecraft (위성자세 최소시간 거동을 위한 추력기와 반작용 휠 통합제어)

  • Lee, Byung-Hoon;Lee, Bong-Woon;Oh, Hwa-Suk;Lee, Seon-Ho;Lee, Seung-Wu
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1578-1583
    • /
    • 2003
  • Time-Optimal solutions for attitude control with reaction wheels as well as with thrusters are studied. The suggested varying-time-sharing ratio thrusting is found to reduce the maneuvering time enormously. The hybrid control such as sequential hybrid and simultaneous hybrid with reaction wheels and thrusters are considered. The results show that simultaneous hybrid method reduces the maneuver time very much. Spacecraft model is KOrea Multi-Purpose SATellite(KOMPSAT)-II, which is being developed by KARI in KOREA as an agile maneuvering satellite.

  • PDF

Stabilization Control Method Development for Single Axis Unstable System Using SGCMG (SGCMG를 이용한 단축 불안정 시스템의 안정화 제어 기법 개발)

  • Lee, Junsik;Yi, Junyong;Yoo, Jihoon;Kim, Jichul;Cheon, Dongik;Oh, Hwa-Suk
    • Journal of Aerospace System Engineering
    • /
    • v.7 no.4
    • /
    • pp.12-17
    • /
    • 2013
  • Control Moment Gyroscope(CMG) is one of the most efficient momentum exchange devices for satellite attitude control and essential device for agile maneuver system. This paper presents the details of a designed Single Gimbal CMG with a constant speed momentum wheel and single axis attitude control unstable to stable. In order to keep the naturally unstable equivalent point, it should be controlling the gimbal constantly. The experimental data are compared with theoretical result and requirements are used to verify their performance specifications.

Development of 0.6Nm Small CMG Hardware and Performance Test (0.6Nm급 소형 CMG 하드웨어 개발 및 성능시험)

  • Jang, Woo-Young;Rhee, Seung-Wu;Kwon, Hyoek-Jin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.9
    • /
    • pp.933-942
    • /
    • 2010
  • Control Moment Gyro(CMG) is one of the most efficient momentum exchange devices for satellite attitude control and CMG is very essential device for agile satellite. And the studies of CMG development and its application to satellite have been done extensively. In this study, the development process of SGCMG hardware for agile small satellite system, the developed hardware and its performance test results are presented. As a SGCMG test results, it is verified that the developed hardware model can produce torque more than 0.6Nm as is designed. By investigating its test data results, the issues that should be considered for the performance improvement and its application are discussed. The remedies for the identified issues are proposed for future study.

Five Reaction Wheel Operation Method for Active SAR Satellite (능동 합성개구레이더위성의 다섯 개 반작용휠 운용방법)

  • Son, Jun-Won;Park, Young-Woong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.9
    • /
    • pp.806-813
    • /
    • 2016
  • For satellite attitude control and maneuver, normally four reaction wheels are used through pyramid configuration. However, if satellite's moment of inertia is large or available reaction wheels' capability is small, we can consider using five reaction wheels. In this case, we should think the arrangement of wheels and their operation method. Active SAR satellite requires high agile maneuver about roll axis to achieve looking angle change. In this research, we study the operation method of five reaction wheels configuration for fast roll maneuver.

Real-Time Flight Testing for Developing an Autonomous Indoor Navigation System for a Multi-Rotor Flying Vehicle (실내 자율비행 멀티로터 비행체를 위한 실시간 비행시험 연구)

  • Kim, Hyeon;Lee, Deok Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.4
    • /
    • pp.343-352
    • /
    • 2016
  • A multi-rotor vehicle is an unmanned vehicle consisting of multiple rotors. A multi-rotor vehicle can be categorized as tri-, quad-, hexa-, and octo-rotor depending on the number of the rotors. Multi-rotor vehicles have many advantages due to their agile flight capabilities such as the ability for vertical take-off, landing and hovering. Thus, they can be widely used for various applications including surveillance and monitoring in urban areas. Since multi-rotors are subject to uncertain environments and disturbances, it is required to implement robust attitude stabilization and flight control techniques to compensate for this uncertainty. In this research, an advanced nonlinear control algorithm, i.e. sliding mode control, was implemented. Flight experiments were carried out using an onboard flight control computer and various real-time autonomous attitude adjustments. The feasibility and robustness for flying in uncertain environments were also verified through real-time tests based on disturbances to the multi-rotor vehicle.

Manufacture and Qualification of Composite Main Reflector of High Stable Deployable Antenna for Satellite (위성용 전개형 고안정 반사판 안테나 주반사판 제작 및 검증)

  • Dong-Geon Kim;Hyun-Guk Kim;Dong-Yeon Kim;Kyung-Rae Koo;Ji-min An;O-young Choi
    • Composites Research
    • /
    • v.37 no.3
    • /
    • pp.219-225
    • /
    • 2024
  • It is essential to develop a light-weight, high-performance structure for the deployable reflector antenna, which is the payload of a reconnaissance satellite, considering launch and orbital operation performance. Among them, the composite main reflector is a key component that constitutes a deployable reflector antenna. In particular, the development of a high-performance main reflector is required to acquire high-quality satellite images after agile attitude control maneuvers during satellite missions. To develop main reflector, the initial design of the main reflector was confirmed considering the structural performance according to the laminate stacking design and material properties of the composite main reflector that constitutes the deployable reflector antenna. Based on the initial design, four types of composite main reflectors were manufactured with the variable for manufacturing process. As variables for manufacturing process, the curing process of the composite structure, the application of adhesive film between the carbon fiber composite sheet and the honeycomb core, and the venting path inside the sandwich composite were selected. After manufacture main reflector, weight measurement, non-destructive testing(NDT), surface error measurement, and modal test were performed on the four types of main reflectors produced. By selecting a manufacturing process that does not apply adhesive film and includes venting path, for a composite main reflector with light weight and structural performance, we developed and verified a main reflector that can be applied to the SAR(Synthetic Aperture Rader) satellite.