• Title/Summary/Keyword: aggregate density

Search Result 300, Processing Time 0.032 seconds

Compare Physicochemical Properties of Topsoil from Forest Ecosystems Damage patterns (산림생태계 훼손 유형별 표토의 이화학적 특성 비교)

  • Kim, Won-Tae
    • Korean Journal of Environment and Ecology
    • /
    • v.29 no.6
    • /
    • pp.923-928
    • /
    • 2015
  • This study was carried out to evaluate the physicochemical properties of different types of topsoil in forest ecosystems by damage pattern and analyse the possibility of using the topsoil as a planting ground construction material. There were 72 samples from 36 sites of 12 damaged areas and 36 sites of 12 non-damaged areas. The results showed that the physicochemical properties of topsoil from non-damaged areas of forest ecosystems were on an average clay loam~sandy loam in soil texture, showing $0.95{\sim}1.10Mg/m^3$ in soil bulk density, $35.7{\sim}44.0m^3/m^3$ in solid phase, 56.0~64.3 in soil porosity, 8.4~35.8% in aggregate stability, 5~13 mm in soil hardness, 5.3~6.1 in pH, 0.14~0.65 dS/m in EC, 0.28~0.42% in T-N, $14{\sim}22cmol^+/kg$ in CEC, $0.15{\sim}0.31cmol^+/kg$ in Ex. $K^+$, $2.07{\sim}2.84cmol^+/kg$ in Ex. $Ca^{2+}$, $0.45{\sim}1.97cmol^+/kg$ in Ex. $Mg^{2+}$, 17~96 mg/kg in Av. $P_2O_5$ and 3.2~5.6% in OM. On the other hand, damaged areas were on an average clay loam~loamy sand in soil texture, showing $1.54{\sim}1.75Mg/m^3$ in soil bulk density, $52.8{\sim}58.0m^3/m^3$ in solid phase, 42.0~47.2 in soil porosity, 4.2~22.5% in aggregate stability, 13~25 mm in soil hardness, 4.8~5.5 in pH, 0.13~0.62 dS/m in EC, 0.02~0.12% in T-N, $5{\sim}15cmol^+/kg$ in CEC, $0.11{\sim}0.18cmol^+/kg$ in Ex. $K^+$, $0.45{\sim}2.36cmol^+/kg$ in Ex. $Ca^{2+}$, $0.39{\sim}0.96cmol^+/kg$ in Ex. $Mg^{2+}$, 15~257 mg/kg in Av. $P_2O_5$ and 0.4~2.2% in OM. After conducting a comparison of physicochemical characteristics of non-damaged forest area and damaged areas, it was found that the physicochemical characteristics of damaged areas were more deteriorated compared to that of non-damaged areas. Therefore, it is judged that it is necessary to establish countermeasures for the conservation and management of the damaged areas for topsoil recycling in the future.

Spermatogenesis of the Spiny Top Shell, Batillus cornutus (Lightfoot, 1786) (Gastropoda: Turbinidae) (소라, Batillus cornutus의 정자형성과정)

  • Jung, Gui-Kwon;Park, Jung-Jun;Lee, Jae-Woo;Lee, Jung-Sick
    • Development and Reproduction
    • /
    • v.11 no.2
    • /
    • pp.97-104
    • /
    • 2007
  • This study describes the spermatogenesis and sperm ultrastructure of the spiny top shell, Batillus cornutus using light and electron microscopy. The spiny top shells were collected by divers in the coastal water of Wandogun, Cheollanamdo, Korea(N $34^{\circ}13'$, E $126^{\circ}47'$) at May 2003. Spiny top shells of $60.0{\sim}69.9\;mm$ in shell height were used in this study. The testis comprises many spermatogenic follicles which contains germ cells in different developmental stages. The primary spermatocytes in the pachytene stage were characterized by synaptonemal complexes. The early spermatids were characterized by appearance of Golgi complex, increased karyoplasmic electron density and tubular mitochondria. In early spermatid the mass of proacrosomal granules consists of numerous heterogeneous granules with high electron density. From the mid-stage of spermiogenesis the well-developed mitochondria aggregate posterior to the nucleus, and surround the proximal and distal centrioles. In this stage, proacrosomal granules are condensed and form a acrosome with thin envelope. During the late spermiogenesis, the acrosome begins to elongate and then became conical. The sperm consists of head, mid-piece and tail. The head comprises a round nucleus and a conical acrosome. Acrosomal rod of microfibrous is observed between nucleus and acrosome. Five mitochondria observed in mid-piece. And tail has the typical "9+2" microtubular system originates from the centrioles.

  • PDF

Changes of Soil Physical Properties by Glomalin Concentration and Rice Yield using Different Green Manure Crops in Paddy (녹비작물 환원 시 Glomalin 함량에 따른 토양물리성 및 벼 수량 변화)

  • Jeon, Weon-Tai;Seong, Ki-Yeong;Kim, Min-Tae;Oh, Gye-Jeong;Oh, In-Seok;Kang, Ui-Gum
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.2
    • /
    • pp.119-123
    • /
    • 2010
  • This experiment was conducted at Sinheung series (fine loamy, mixed, nonacid, mesic family of Fluvaquentic Endoaquepts) in 2007 to 2008 at the National Institute of Crop Science (NICS), RDA, Suwon, Gyeonggi province, Korea. Three kinds of green manure crops (hairy vetch, barley, rye) incorporated in soil for rice cultivation. 6.3 kg N $10a^{-1}$, and3.2 kg $P_2O_5$ $10a^{-1}$ were applied to rye and barley plot before rice transplanting. Chemical fertilizers had not been applied to hairy vetch plot. Glomalin concentration, soil bulk density, and porosity were measured in soil from different green manure crops incorporation after rice harvesting in paddy. Soil bulk density and porosity after rice harvesting improved at surface soil of hairy vetch incorporation plot. Degree of water stable aggregates increased all green manure incorporation plots. Glomalin concentrations significantly increased at hairy vetch incorporation treatment. In barley plot, the concentration of glomalin increased at 10-20 soil depth. There were no differences relationship between soil carbon, and glomalin concentration, but relationship between soil aggregate stability, and glomalin concentration significantly positive under green manure crop-rice cropping system. Rice yield decreased at hairy vetch incorporation plot because of field lodging. We suggested that hairy vetch incorporation should be considered about application amount, and water management using rice cultivation because of soil properties changes.

Evaluation of Properties of Artificial Soil Aggregate Based on Ground Granulated Blast-Furnace Slag According to Unit Binder Content (단위결합재량에 따른 고로슬래그 기반 육성용 인공토양골재의 특성평가)

  • Mun, Ju-Hyun;Sim, Jae-Il;Yun, In-Gu
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.5
    • /
    • pp.85-92
    • /
    • 2016
  • The eight mixes and artificial soil aggregates were prepared for evaluating the practical application of lightweight foamed concrete as soil aggregates. The main parameter was unit binder content ranged between from 100 to $800kg/m^3$. In lightweight foamed concrete, flow, slurry and dried density, and compressive strength at different ages were measured. In Artificial soil aggregates crushed from lightweight foamed concrete, particle size distribution, pH, coefficient of permeability, cation exchange capacity(CEC), and ratio of carbon to nitrogen(ratio of C/N), were measured. The test results showed that flow, slurry and dried density, and compressive strength at different ages of lightweight foamed concrete increased with the increasing of unit binder content. Compressive strength at age of 28, of lightweight foamed concrete with unit binder of more than $500kg/m^3$, was more than 4 MPa. The ammonium phosphate immersion time of more than age of 3, was effective to decrease pH of artificial soil aggregates. In addition, artificial soil aggregates was evaluated as high class in terms of cation exchange capacity(CEC), while satisfied with value of ratio of carbon to nitrogen(ratio of C/N) recommended by landscape specification.

Sequential sampling method for monitoring potato tuber moths (Phthorimaea operculella) in potato fields

  • Jung, Jae-Min;Byeon, Dae-hyeon;Kim, Eunji;Byun, Hye-Min;Park, Jaekook;Kim, Jihoon;Bae, Jongmin;Kim, Kyutae;Roca-Cusachs, Marcos;Kang, Minjoon;Choi, Subin;Oh, Sumin;Jung, Sunghoon;Lee, Wang-Hee
    • Korean Journal of Agricultural Science
    • /
    • v.47 no.3
    • /
    • pp.615-624
    • /
    • 2020
  • An effective sampling method is necessary to monitor potato tuber moths (Phthorimaea operculella) because they are the biggest concern in potato-cultivating areas. In this study, a sequential sampling method was developed based on the results of field surveys of potato tuber moths in South Korea. Potato tuber moths were collected in fields cultivating potatoes at six sites, and their spatial distribution was investigated using the Taylor power law. The optimal sampling size and cumulative number of potato tuber moths in traps to stop sampling were determined based on the spatial distribution pattern and mean density of the collected potato tuber moths. Finally, the developed sampling method was applied to propose a control action, and its sampling efficiency was compared with that of the traditional sampling method using a binomial distribution. The potato tuber moths tended to aggregate; the optimal number was approximately 5 - 16 traps for sampling, and the number varied with the mean density of potato tuber moths according to the sampling sites. In addition, one, two, and three sites might require the following actions: Continued sampling, control, and no control, respectively. Sampling with the binomial distribution showed the minimum sample size was 12 when considering the economic threshold level. Here, we propose an effective sampling method that can be applied for future monitoring and field surveys of potato tuber moths in South Korea.

Flame Retardant Properties of Polymer Cement Mortar Mixed with Light-weight Materials for 3D Printing (3D 프린팅용 경량재료 혼입 폴리머 시멘트 모르타르의 난연특성)

  • Son, Bae-Geun;Song, Hun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.9 no.3
    • /
    • pp.330-337
    • /
    • 2021
  • 3D printing is not only at the fundamental study and small-scale level, but has recently been producing buildings that can be inhabited by people. Buildings require a lot of cost and labor to work on the form work, but if 3D printing is applied to the building, the construction industry is received attention from technologies using 3D printing as it can reduce the construction period and cost. 3D printing technology for buildings can be divided into structural and non-structural materials, of which 3D printing is applied to non-structural materials. Because 3D printing needs to be additive manufacturing, control such as curing speed and workability is needed. Since cement mortar has a large shrinkage due to evaporation of water, cement polymer dispersion is used to improve the hardening speed, workability, and adhesion strength. The addition of polymer dispersion to cement mortar improves the tensile strength and brittleness between the cement hydrate and the polymer film. Cement mortar using polymer materials can be additive manufacturing but it has limited height that can be additive manufacturing due to its high density. When light-weight materials are mixed with polymer cement mortar, the density of polymer cement mortar is lowered and the height of additive manufacturing, so it is essential to use light-weight materials. However, the use of EVA redispersible polymer powder and light-weight materials, additional damage such as cracks in cement mortar can occur at high temperatures such as fires. This study produced a test specimen incorporating light-weight materials and EVA redispersible polymer powder to produce exterior building materials using 3D printing, and examined flame resistance performance through water absorption rate, length change rate, and cone calorimeter test and non-flammable test. From the test result, the test specimen using silica sand and light-weight aggregate showed good flame resistance performance, and if the EVA redispersible polymer powder is applied below 5%, it shows good flame resistance performance.

Studies on the Durability of Mortars (모르타르의 내구성에 관한 연구)

  • 고재군
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.11 no.1
    • /
    • pp.1604-1615
    • /
    • 1969
  • This experiment was carried out as one of the basic studies to improve the acid resistance of concrete and it was conducted to investigate some relations among physical properties such as basorption, ratio of water to cement, compressive strength, density and ratio of mix to weight losses of mortar when exposed to 0.1 N solution of hydrochrolic acid. The results obtained from the limited data secured so far in this experiment are summarized as follows: 1. The specimens used in the experiment were made of 5 cubic centimeters of mortar having such various ratios of mix by weight as 1 : 1, 1 : 3, 1 : 5, 1 : 7, 1 : 10. 2. Physical tests included compressive strengths at 7 days, 28 days, 3 months, and 6 month, and 5 hour boiling absorption test. 3. In acid test, every specimen was immersed into 0.1 N solution of hydrochrolic acid. The specimens exposed to the acid solution were weighed to determine the weight losses of the acid-corroded at one week interval for 7 weeks exposure, and the old acid solutions were also changed to fresh one when weighed the weight losses by acid attack at one week interval. 4. The correlative relations were found among physical properties and they are expressed by certain formulas as follows; i) Relation between ratio of mix and absorption Y = 1.036x + 13.53 where Y: absorption(%) X: ratio of mix ii) Relation between ratio of mix and ratio of water-cement Y = 0.204x + 0.214 where Y: ratio of water-cement. X: ratio of mix iii) Relation between ratio of water-cement and absorption Y = 5.01x + 12.53 where Y: absorption(%). X: ratio of water-cement iv) Relation between density and absorption Y = 50.6 - 0.0176X where Y: absorption(%). X: density($kg/m^3$) v) Relation between density and ratio of water cement Y = 7.2183 - 0.0033X where Y: ratio of water-cement . X: density($kg/m^3$) 5. After completing the acid exposure test the specimens were corroded and , the per cent ranges of weight losses varies from a minimum of 20.4 per cent at a 1 : 1 mix to a maximum of 92.0 per cent at a 1:10 mix 6. The correlative relations of physical properties of mortar to weight losses by acid attak were found and they are also expressed by certain formulas as follows: i) Relation between weight losses and ratio of mix Y = 8.59X + 8.63 where Y: weight losses(%), X: ratio of mix ii) Relation between wieght losses and absorption Y = 0.121x + 12.43 where Y: absorption(%). X: weight losses(%) iii) Relation between weight losses and ratio of w/c Y = 0.0226X + 0.07 where Y: ratio of w/c X: weight losses(%) iv) Relation between weight losses and compressive strength LogY = 3.6097 - 0.05058X + 0.00022$X^2$ where Y: compressive strength ($kg/cm^3$) X: weight losses(%) v) Relation between weight losses and density Y = 2153.1 - 6.62X where Y: density($kg/m^3$) X: weigh losses(%) 7. In order to make better acid resistant mortar, it could be concluded that a 1 : 3 mix or richer mixes, adequate mixing water to minnimize the ratio of water-cement considering the workability, 16 per cent or less absorption by 5 hour boiling water, 1,800 kilogram per cubic meter or denser density by absolute weight base and 200 kilogram per square meter or compressive strength at 20 day, etc are required so as to obtain acid-resistant mortar. In addition to the above, it might be recommonded to select the fine aggregate and to use better equipments such as a mechanical vibrator, a mechanical mixer etc. in concrete manufacturing works.

  • PDF

The Density and Strength Properties of Lightweight Foamed Concrete Using Stone-Powder Sludge in Hydrothermal Reaction Condition (수열반응 조건에서 석분 슬러지를 사용한 경량 기포 콘크리트의 밀도와 강도 특성)

  • Kim, Jin-Man;Jeong, Ji-Yong;Choi, Se-Jin;Kim, Bong-Joo
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.5 s.95
    • /
    • pp.687-693
    • /
    • 2006
  • The Stone Powder Sludge(below SPS) is the by-product from the process that translates stone power of 8mm under as crushed fine aggregate. It is the sludge as like cake that has average particle size of $7{\mu}m$, absorbing water content of 20 to 60%, and $SiO_2$ content of 60% over. Because of high water content of SPS, it is not only difficult to handle, transport, and recycle, but also makes worse the economical efficiency due to high energy consuming to drying. This study is aim to recycle SPS as it is without drying. Target product is the lightweight foamed concrete that is made from the slurry mixed with pulverized mineral compounds and foams through hydro-thermal reaction of CaO and $SiO_2$. Although in the commercial lightweight foamed concrete CaO source is the cement and $SiO_2$ source is high purity silica powder with $SiO_2$ of 90%, we tried to use the SPS as $SiO_2$ source. From the experiments with factors such as foam addition rate and replacement proportion of SPS, we find that the lightweight foamed concrete with SPS shows the same trends as the density and strength of lightweight foamed concrete increases according to decrease of foam addition rate. But in the same condition, the lightweight foamed concrete with SPS is superior strength and density to that with high purity silica. This trends is distinguished according to increase of replacement proportion of SPS, also the analysis of XRF shows that the hydro thermal reaction translates SPS to tobermorite. Although SPS has low $SiO_2$ contents, the lightweight foamed concrete with SPS has superior strength and density, because it reacts well with CaO due to extremely fine particles. We conclude that it is possible to replace the high purity silica as SPS in the lightweight foamed concrete experimentally.

Studies on Influence of Water-Proof Agents on the Properties of Mortar (방수제(防水劑)가 모르터의 제성질(諸性質)에 미치는 영향(影響)에 관(關)한 연구(硏究))

  • Kim, Seong Wan;Sung, Chan Yong;Kim, Sun Young
    • Korean Journal of Agricultural Science
    • /
    • v.14 no.2
    • /
    • pp.358-372
    • /
    • 1987
  • This study was performed to obtain data which can be applied to use of water-proof mortars. The data was based on the properties of water-proof mortars depending upon various mixing ratios to compare those of cement mortar. The water-proof agents used were retard and accelerate type which are being used as mortar structures. The water-proof agents, mixing ratios of cement to fine aggregate were 1:1, 1:2, 1:3 and 1:4. The results obtained were summarised as follows; 1. The results of flow test, water-cement ratio was increased with the increasing of mixing ratio. 2. The permeability were increased in poorer mixing ratio and higher water pressure. 3. The bulk density was decreased with the increasing of mixing ratio, and compressive and tensile strength were increased with increasing of the bulk density. 4. At 1:1 mixing ratio, the highest strengths were showed and strengths were decreased with the increasing of mixing ratio. 5. The absorption rates were increased in- poorer mixing ratio 6. The correlation between W/C, permeability, bulk density, compressive strength and absorption rate were highly significant as a straight line, respectively.

  • PDF

Manufacturing artificial lightweight aggregates using coal bottom ash and its application to the lightweight-concretes (석탄 바닥재를 이용한 인공경량골재의 제조 및 경량 콘크리트에 적용)

  • Kim, Kang-Duk;Kang, Seung-Gu
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.18 no.5
    • /
    • pp.211-216
    • /
    • 2008
  • The artificial lightweight aggregate (ALA) was manufactured in a rotary kiln at $1125^{\circ}C$ using green body formed by pelletizing the batch powder composing of coal bottom ash (CBA) produced from power plant, clay and dredged soil (DS). The TCLP (Toxicity characteristic leaching procedure) results showed that the dissolution concentration of heavy metal ions of ALA fabricated in this study was below the limitation defined by the enforcement regulations of wastes management law in Korea. The ALA containing 60$\sim$70 wt% CBA had a bulk density of 1.45$\sim$1.49 and a water absorption of 17.2$\sim$18.5 %. The impact values for oven-dry state and saturated-surface dry state of ALA were 27.4$\pm$1.3 and 23.4$\pm$2.6 % respectively. The 28-days compressive strength of concrete made with various ALA was $22.7\sim27.8 N/mm^2$. The slump of concrete with ALA containing CBA 60 and 70 wt% were 7.9 and 14.3 cm respectively. The unit weight of concrete made with any ALA fabricated in this study was satisfied with the standard specifications of lightweight concrete for the civil engineering and construction presented by Korea as below $1.84 ton/m^3$.