• Title/Summary/Keyword: agglomeration of particles

Search Result 175, Processing Time 0.027 seconds

[Retraction]Size measurement and characterization of ceria nanoparticles using asymmetrical flow field-flow fractionation (AsFlFFF)

  • Kim, Kihyun;Choi, Seong-Ho;Lee, Seungho;Kim, Woonjung
    • Analytical Science and Technology
    • /
    • v.32 no.5
    • /
    • pp.173-184
    • /
    • 2019
  • As the size of semiconductors becomes smaller, it is necessary to perform high precision polishing of nanoscale. Ceria, which is generally used as an abrasive, is widely used because of its uniform quality, but its stability is not high because it has a high molecular weight and causes agglomeration and rapid precipitation. Such agglomeration and precipitation causes scratches in the polishing process. Therefore, it is important to accurately analyze the size distribution of ceria particles. In this study, a study was conducted to select dispersants useful for preventing coagulation and sedimentation of ceria. First, a dispersant was synthesized and a ceria slurry was prepared. The defoamer selection experiment was performed in order to remove the air bubbles which may occur in the production of ceria slurry. Dynamic light scattering (DLS) and asymmetrical flow field-flow fractionation (AsFlFFF) were used to determine the size distribution of ceria particles in the slurry. AsFlFFF is a technique for separating nanoparticles based on sequential elution of samples as in chromatography, and is a useful technique for determining the particle size distribution of nanoparticle samples. AsFlFFF was able to confirm the presence of a little quantities of large particles in the vicinity of 300 nm, which DLS can not detect, besides the main distribution in the range of 60-80 nm. AsFlFFF showed better accuracy and precision than DLS for particle size analysis of a little quantities of large particles such as ceria slurry treated in this study.

Study of Aluminum Agglomeration Model During Solid Propellant Combustion (고체추진제 연소 중 알루미늄 응집 모델 연구)

  • Yoon, Jisang;Lee, Kookjin;Kim, Daeyu;Park, Namho;Ko, Seungwon;Yoon, Woongsup
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.23 no.2
    • /
    • pp.78-86
    • /
    • 2019
  • Aluminum, which is a metal fuel contained in the composite solid propellant, is not ignited and burned on the combustion surface by the oxide film, and it partially melts and coalesces with surrounding aluminum particles. For the evaluation and design of the propellant performance, modeling was performed to predict the size and distribution of agglomerated particles, and the size and distribution of agglomerates were compared and verified through experiment. The predicted values showed the tendency to decrease with pressure as in the experiment, but the error increased as the pressure increased. The agglomerated particle distribution graph showed a difference in the volume fraction although the diameter at the peak was the same.

A novel method for the synthesis of nano-magnetite particles

  • Syahmazgi, Maryam Ghodrati;Falamaki, Cavus;Lotfi, Abbas Sahebghadam
    • Advances in nano research
    • /
    • v.2 no.2
    • /
    • pp.89-98
    • /
    • 2014
  • A novel and simple method for the synthesis of nano-magnetite particles is disclosed. In the novel procedure, $Fe^{2+}$ is the only source of metal cation. Carboxymethylcellulose (CMC) is used as the structure directing agent. The phase analysis of the nano-particles was performed using XRD and electron diffraction techniques. Size and morphology analysis was performed using light scattering and TEM techniques. The effect of $NH_4OH$ solution (32 wt. %) at different CMC concentrations on the size distribution of the final magnetite powders is studied. An optimal base concentration exists for each CMC concentration leading to minimal agglomeration. There exists a minimum CMC concentration (0.0016 wt. %), lower than that no magnetite forms. It is shown that using the new method, it is possible to immobilize a lipase enzyme (Candida Rugosa) with immobilization efficiency larger than 98 % with a loading more than 3 times the reported value in the literature. The latter phenomenon is explained based on the agglomerate state of the nano-particles in the liquid phase.

Suspension Polymerization with Hydrophobic Silica as a Stabilizer II. Preparation of Polystyrene Composite Particles Containing Carbon Black (소수성 실리카를 안정제로 하는 현탁중합 II. 카본블랙을 함유하는 폴리스티렌 복합체 입자의 합성)

  • Park, Moon-Soo
    • Polymer(Korea)
    • /
    • v.30 no.6
    • /
    • pp.505-511
    • /
    • 2006
  • We tried to prepare polystyrene composite particles containing carbon black by suspension polymerization with water as a reaction medium. Hydrophobic silica was selected as a stabilizer and oil-soluble azobisisobutyronitrile (AIBN), as an initiator. All polymerization reactions were carried out at a fixed temperature of $75^{\circ}C$. Stabilizer concentration was varied from $0.17{\sim}3.33wt%$ compared to water, where particles with $7.96{\mu}m$ in average diameter were obtained at 1.57 wt% of stabilizer. Increase in divinylbenzene concentration, as a crosslinking agent, from $0.1{\sim}1.0 wt%$ compared to monomer exhibited a large increase in average particle diameter Incorporation of 1wt% of carbon black compared to monomer produced an increase in average diameter It is speculated that viscosity lower than that necessary to induce even dispersion of carbon black particles led to poor dispersion, and as a result, large particles. For a styrene mixture containing 3 wt% carton black compared to monomer, enhanced dispersion due to an increase in carbon black concentration reduced average particle diameters. For styrene mixtures containing 1 and 3 wt% carbon black compared to monomer, preparticles before polymerization and polymer composite particles after polymerization showed a similar tendency towards particle formation. When carbon black concentration compared to monomer was increased to 5 and 7 wt%, styrene mixtures exhibited a large increase in viscosity and thus better dispersion of carbon black particles, which led to a decrease in preparticle diameters. However, these particles experienced agglomeration in the polymerization process, and polystyrene composite particles increased in average diameter.

Development of Electroconductive Paints for Electric-Shock on Human Body Using Carbon Black (카본블랙을 이용한 인체감전용 전도성 도료의 개발)

  • Kang, Kae-Myung
    • Korean Journal of Materials Research
    • /
    • v.18 no.12
    • /
    • pp.683-688
    • /
    • 2008
  • For development of a human body model for electric shock, electroconductive paints with carbon black as a filler material were developed. The characteristics of the volume resistivities of thin films fabricated using the electroconductive paints were investigated as a function of the particle sizes and content of carbon black. With a carbon black particle size over $80\;{\mu}m$, agglomeration of carbon black powders was observed. The volume resistivity of the particles increased as the porosity increased and as the amount of carbon black decreased due to the agglomeration of carbon black powders. With a particle size of $4\;{\mu}m$ and $20\;{\mu}m$, agglomeration of carbon black powders was not observed and their porosities were measured as 0.86% and 1.12% with volume resistivities of $20\;{\Omega}{\cdot}cm$ and $80\;{\Omega}{\cdot}cm$ respectively. A carbon black particle size of less than $20\;{\mu}m$ is considered to be suitable as a type of electric-shock electroconductive paint for a human body model.

The Effect of Dry Methods for Synthesized Yttria-doped Ceria by Co-precipitation (공침법으로 제조된 Yttira Doped Ceria분체의 건조방법에 따른 입자특성 고찰)

  • 변윤기;이상훈;최성철
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.8
    • /
    • pp.798-803
    • /
    • 2003
  • In synthesis of nano powders, the hard agglomeration for the synthesized powders occurred during the drying processing. In order to avoid hard agglomeration in particles the freeze drying process was used in this experiment. e fabricated the Yttira-Doped Ceria(YDC) nano powder by co-precipitation. Starting materials used in experiments were the cerium(III) nitrate and yttrium(III) nitrate solution with 야-water, which two solutions were mixed and then the precipitated hydroxides were prepared for adding sodium hydroxide. The co-precipitated powders were dried by the thermal drying at 8$0^{\circ}C$ for 24 h and by freeze drying at -4$0^{\circ}C$, 30 mtorr for 72 h. The lattice parameter and crystallite size as a function of calcination temperature was characterized by XRD analysis. The lattice parameter of YDC was decreased with addition amount of yttrium and was estimated as 5.401683 $\AA$ at $700^{\circ}C$. Crystallite size were calculated by XRD-LB method, and morphologies were confirmed with the observation of TEM and SEM. The freeze dried YDC powders had medium diameter of 17 nm with more uniform size distribution than the thermal dried YDC posers, which were mainly ascribed to the difference of agglomerates formation during drying stage.

A Model on the Densification of Agglomerates of Powders (분말 응집체의 치밀화에 관한 모델)

  • 김형섭;이재성
    • Journal of Powder Materials
    • /
    • v.11 no.4
    • /
    • pp.301-307
    • /
    • 2004
  • Successful implementation of the powder forming process requires a detailed understanding of several interacting phenomena. The aim is to better control the process variables and to optimize the design parameters. A number of studies were carried out using various constitutive models that take the density change during powder forming into account. Most of them were developed for powders and sintered porous metals, but few of them can describe powder agglomerates, whose behaviour is different from that of uniformly arranged powders. The modification is needed to account for the effect of agglomeration on densification behaviour. Incorporating powder agglomeration into a constitutive model is of considerable importance, as it provides a possibility of relating the powder densification response to microstructural characteristics of powder particles, especially in case of nano powders. In this paper, we proposed a new powder agglomerate model in order to describe the unique densification behaviour of nano powders. The proposed model was applied to the densification of powder agglomerates during cold isostatic pressing.

Effect of Ultrasound on the Mechanical Properties of Electrodeposited Ni-SiC Nano Composite

  • Gyawali, Gobinda;Lee, Su-Wan;U, Dong-Jin;Lee, Han-Yong;Jo, Seong-Hun
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2010.05a
    • /
    • pp.26.1-26.1
    • /
    • 2010
  • Ni-SiC nano composite coatings were fabricated using electrodeposition technique with the aid of ultrasound. The properties of the nano composite were investigated by using SEM, XRD, Wear test and Vicker's microhardness test. The results demonstrated that the microhardness of composite coatings under ultrasonic condition was improved significantly as compared to conventional electrodeposition techniques without ultrasound. The nano particles were found to be distributed homogeneously with reduced agglomeration. The synergistic combination of superior wear resistance and improved microhardness was found in ultrasonicated conditions to the Ni-SiC nano composite coatings.

  • PDF

An Experimental Study on the Rolling Resistance of Silver Coating Films Modified by Plasma Surface Treatments (플라즈마 표면개질 처리된 은 박막의 구름저항거동 고찰)

  • 양승호;공호성;윤의성;김대은
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1998.10a
    • /
    • pp.49-58
    • /
    • 1998
  • An experimental study was performed to discover the effect of adsorbed moisture on the rolling resistance behavior of pure silver coated 52100 bearing steel. Plasma surface modifications were performed on the silver coated specimen to change the wetting characteristics. Experiments using a thrust ball beating-typed roiling test-rig were performed under vacuum, dry air and various tmmidity conditions. Results showed that the changes in the wetting characteristics influenced remarkably on the silver particle agglomeration and resulted in the different behavior of rolling resistance with humidity.

  • PDF

An Experimental Study on the Rolling Resistance of Silver-Coated Films Modified by Plasma Surface Treatments (플라즈마 표면개질 처리된 은 박막의 구름저항거동 고찰)

  • 양승호;공호성;윤의성;김대은
    • Tribology and Lubricants
    • /
    • v.15 no.4
    • /
    • pp.321-327
    • /
    • 1999
  • An experimental study was performed to discover the effect of adsorbed moisture on the rolling resistance behavior of pure silver-coated 52100 bearing steel. Plasma surface modifications were performed on the silver-coated specimen to change the wetting characteristics. Experiments using a thrust ball bearing-type rolling test-rig were performed under vacuum, dry air and various humidity conditions. Results showed that the changes in the wetting characteristics influenced remarkably on the silver particle agglomeration and resulted in the different behavior of rolling resistance with humidity.