• Title/Summary/Keyword: agar-well diffusion assay

Search Result 26, Processing Time 0.031 seconds

Antibacterial Activities of Essential Oil from Zanthoxylum schinifolium Against Food-Borne Pathogens (산초 정유성분의 식중독균에 대한 항균 활성)

  • Jang, Mi-Ran;Seo, Ji-Eun;Lee, Je-Hyuk;Kim, Gun-Hee
    • Korean journal of food and cookery science
    • /
    • v.26 no.2
    • /
    • pp.206-213
    • /
    • 2010
  • In this study, the antibacterial activities of essential oil from Zanthoxylum schinifolium against four Gram-positive bacteria and six Gram-negative bacteria were investigated. The antibacterial activity of the oils was determined using the agar-well diffusion assay, MIC (minimum inhibitory concentration) and MBC (minimum bactericidal concentration). In particular, essential oil from Z. schinifolium showed higher antibacterial activity against Gram-positive bacteria than against Gram-negative bacteria. Essential oil from Z. schinifolium displayed large inhibition zones especially against Bacillus cereus (31 mm). At concentrations between 0 and $20\;{\mu}g/mL$ the oils showed an antibacterial effect against both Gram-negative and Gram-positive bacteria. The minimum inhibitory concentration (MIC) values against nine bacteria ranged from 1.25 to $5\;{\mu}g/mL$. The minimum bactericidal concentration (MBC) values against eight bacterial ranged from 2.5 to $20\;{\mu}g/mL$, except Shigella sonnei. Furthermore, our finding on the antibacterial activities of essential oils from Zanthoxylum schinifolium validated the use of this plant for medical purposes.

Antibacterial Action against Food-Borne Pathogens by the Volatile Flavor of Essential Oil from Chrysanthemum morifolium Flower (국화 꽃 휘발성 향기성분의 식중독균에 대한 항균 작용)

  • Jang, Mi-Ran;Seo, Ji-Eun;Lee, Je-Hyuk;Chung, Mi-Sook;Kim, Gun-Hee
    • The Korean Journal of Food And Nutrition
    • /
    • v.23 no.2
    • /
    • pp.154-161
    • /
    • 2010
  • The aim of this study was to investigate antibacterial activities of essential oil from C. morifolium against four Grampositive bacteria and six Gram-negative bacteria. The antibacterial activity of the oils was determined by agar-well diffusion assay, minimum inhibitory concentration(MIC), and minimum bactericidal concentration(MBC). Essential oil of C. morifolium had a large inhibition zones especially against Salmonella enterica(21 mm) and Bacillus cereus(19 mm). Essential oil of C. morifolium generally showed higher antibacterial activity against Gram-positive bacteria than Gram-negative bacteria. MIC of essential oil from C. morifolium was 5 ${\mu}g/m{\ell}$ against ten food-borne pathogens. MBC values were determined to be from 5 to 20 ${\mu}g/m{\ell}$ against eight bacteria except Salmonella choleraesuis and Listeria monocytogenes. Therefore, the essential oil of C. morifolium and its components have a potent antibacterial activity against food-borne pathogens, and is expected to be used as a novel food preservative.

In Vitro Antioxidant Activity Profiles of ${\beta}$-Glucans Isolated from Yeast Saccharomyces cerevisiae and Mutant Saccharomyces cerevisiae IS2

  • Song, Hee-Sun;Moon, Ki-Young
    • Food Science and Biotechnology
    • /
    • v.15 no.3
    • /
    • pp.437-440
    • /
    • 2006
  • To explore the possible usefulness of ${\beta}$-glucans as natural antioxidants, the antioxidant profiles of ${\beta}$-glucan, extracted from Saccharomyces cerevisiae KCTC 7911, and water soluble and insoluble mutant ${\beta}$-glucan, isolated from yeast mutant S. cerevisiae IS2, were examined by five different in vitro evaluation methods: lipid peroxidation value (POV), nitric oxide (NO), 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical, reducing power, and ${\beta}$-carotene diffusion assay. The antioxidant activities of all ${\beta}$-glucans evaluated in POV test were comparable to or better than that of the known antioxidant, vitamin C. Remarkably, the ${\beta}$-glucan and water insoluble mutant ${\beta}$-glucan possessed 2.5-fold more potent activity than vitamin C at a dosage of 2 mg. Although vitamin C showed 100-fold greater activity than all ${\beta}$-glucans in NO and DPPH tests for measuring the radical scavenging capacity, all ${\beta}$-glucans revealed higher radical scavenging activity than the known radical scavenger, N-acetyl-L-cysteine (NAC), in DPPH test. The water insoluble mutant ${\beta}$-glucan had 2.6- and 5-fold greater antioxidative activity than water soluble ${\beta}$-glucan in NO and DPPH tests, respectively, showing that all ${\beta}$-glucans were able to scavenge radicals such as NO or DPPH. While all ${\beta}$-glucans revealed lower antioxidant profiles than vitamin C in both reducing power activity and ${\beta}$-carotene agar diffusion assay, the ${\beta}$-glucan and water insoluble mutant ${\beta}$-glucan did show a marginal reducing power activity as well as a considerable ${\beta}$-carotene agar diffusion activity. These results confirmed the potential usefulness of these ${\beta}$-glucans as natural antioxidants.

Probiotic Properties of Lactobacillus salivarius CPM-7 Isolated from Chicken Feces. (계분으로부터 Lactobacillus salivarius의 분리 및 생균제적 특성)

  • Lim, Soo-Jin;Jang, Sung-Sik;Kang, Dae-Kyung
    • Microbiology and Biotechnology Letters
    • /
    • v.35 no.2
    • /
    • pp.98-103
    • /
    • 2007
  • To isolate probiotic lactic acid bacteria for animal, we have screened the microorganisms from chicken feces, by random selection and agar well diffusion assay. Among them, CPM-7 strain showing superior inhibitory activity against Escherichia coli was selected. By examining carbohydrates utilization, morphologic property and 16S rRNA gene sequence, CPM-7 strain was identified as Lactobacillus salivarius, then named L. salivarius CPM-7. L. salivarius CPM-7 produced thirteen enzymes in the test using API ZYM kit, and showed resistance to low pH and bile salts. It survived at pH 2 for 30 min. and pH 3 for 6 hr. And, it was able to grow in MRS medium containing 0.2% (w/v) bile salts. L. salivarius CPM-7 adhered to the jejunal epithelium cells of pig. Both the supernatant of L. salivarius CPM-7 and the its neutralized one showed high inhibitory activity against E. coli K88.

Antifungal Activity of Borneolum (Borneo-Camphor) from Dryobalanops aromatica against Malassezia furfur (Dryobalanops aromatica 유래 용뇌의 Malassezia furfur에 대한 항균 활성)

  • Kim Young-ju;Hwang Guen-bae;Seu Young-Bae
    • Microbiology and Biotechnology Letters
    • /
    • v.33 no.3
    • /
    • pp.236-239
    • /
    • 2005
  • Ethyl acetate extracts of traditional medicinal herbs were screened for their antifungal activity against Malassezia furfur through the liquid growth inhibition method with 96 well plate and the paper disk agar diffusion assay. Among the 91 kinds of herbal solvent extracts, borneolum (borneo-camphor, No. 56) was finally selected as the best antifungal effective medicinal herb. The MIC value of No. 56 against M. furfur was 0.3 mg/ml ($8.2{\times}10^6$ CFU/ml) and it was three times more efficient than midazole which is the known antifungal agent in clinical medicines.

In Vitro Effects of Essential Oils from Ostericum koreanum against Antibiotic-Resistant Salmonella spp

  • Shin, Seung-Won
    • Archives of Pharmacal Research
    • /
    • v.28 no.7
    • /
    • pp.765-769
    • /
    • 2005
  • The essential oil fraction of Ostericum koreanum was analyzed by GC-MS. Inhibiting activities of this oil and its main components were tested by the broth dilution assay and disk diffusion test against one antibiotic-susceptible and two resistant strains of Salmonella enteritidis and S. typhimurium, respectively. The GC-MS analysis revealed thirty-four compounds; the main components were $\alpha$-pinene (41.12%), $\rho$-cresol (17.99%) and 4-methylacetophenone (7.90%). The essential oil of O. koreanum and its main components were significantly effective against the tested antibiotic-susceptible strains as well as against the resistant strains of the two Salmonella species, with MICs (minimum inhibitory concentrations) ranging from 2 mg/mL to 16 mg/mL. The anti-Salmonella effects of the oils were dose-dependent on $M\"{u}ller-Hinton$ agar plates in this experiment. Additionally, checkerboard titer test results demonstrated significant combined effects of streptomycin and O. koreanum oil or cresol, one of the main components of this oil, against the two streptomycin resistant strains of S. typhimurium, with FICIs ranging from 0.12 to 0.37.

Biosurfactant Production from Novel Air Isolate NITT6L: Screening, Characterization and Optimization of Media

  • Vanavil, B.;Perumalsamy, M.;Rao, A. Seshagiri
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.9
    • /
    • pp.1229-1243
    • /
    • 2013
  • In this paper, an air isolate (NITT6L) has been screened based on hemolytic activity, emulsification activity, drop collapsing test, and oil displacement test, as well as lipase activity. It was found that strain NITT6L was able to reduce the surface tension of the medium from 61.5 to 39.83 mN/m and could form stable emulsions with tested vegetable oils. Morphological, biochemical, 16S rRNA sequencing analyses, and fatty acid methyl ester analysis using gas chromatography confirmed that the air isolate under study was Pseudomonas aeruginosa. Characterization of the biosurfactant using agar double diffusion assay revealed that the biosurfactant was anionic in nature, and CTAB-methylene blue assay and Molisch test revealed its glycolipid nature. The FT-IR spectrum confirmed that the crude biosurfactant was a rhamnolipid. Using unoptimized medium containing sucrose as the carbon source, the isolate was found to produce 0.3 mg/ml of rhamnolipid in batch cultivation (shake flask) at $37^{\circ}C$ and pH 7. Optimization of the medium components was carried out using design of experiments and the yield of rhamnolipid has been enhanced to 4.6 mg/ml in 72 h of fermentation.

Estimation of Antibacterial Properties of Chlorophyta, Rhodophyta and Haptophyta Microalgae Species

  • Imran Bashir, Khawaja Muhammad;Lee, Jae-Hyeon;Petermann, Maike Julia;Shah, Abid Ali;Jeong, Su-Jin;Kim, Moo-Sang;Park, Nam-Gyu;Cho, Man-Gi
    • Microbiology and Biotechnology Letters
    • /
    • v.46 no.3
    • /
    • pp.225-233
    • /
    • 2018
  • In this exploratory study, eight types of microalgae from different phyla (Chlamydomonas reinhardtii, Chlorella species, Haematococcus pluvialis, Porphyridium purpureum, Porphyridium cruentum, Isochrysis species, Isochrysis galbana, and Pavlova lutheri) were tested for their antibacterial activities against eight target pathogenic bacterial strains. The agar well diffusion method and broth micro dilution assay were conducted to estimate the antibacterial activity. Microalgae cell-free supernatants, exopolysaccharides (EPS), water, and organic solvent extracts were used for inhibition analysis. EPS extracted from P. lutheri showed activity against Bacillus subtilis and Pseudomonas aeruginosa. Inhibition zone diameters of 14-20 mm were recorded on agar plates, while the minimum inhibitory concentrations in the broth micro dilution assay were $0.39-25mg\;ml^{-1}$. During this study, haptophyte microalgae, Isochrysis species, and P. lutheri extracts showed the highest activity against most of the tested pathogenic bacterial strains, while most of the extracts were active against the important foodborne pathogen P. aeruginosa. This study showed promising results regarding important microalgae phyla, which will further aid research related to extracts and exploitation of bioactive metabolic compounds in the food and pharmaceutical industries.

Antibacterial Activities of Honeys on the Staphylococcus aureus (Staphylococcus aureus에 대한 벌꿀의 항균 활성)

  • 백승화;정동현
    • The Korean Journal of Food And Nutrition
    • /
    • v.15 no.2
    • /
    • pp.158-164
    • /
    • 2002
  • This study examined for the investigation the effect of honey on antibacterial activity. The experimental honey were used the domestics, or chestnut honey, multiflower honey, acassia honey, native honey and the foreign, or manuka honey, clover honey, canola honey, and the artificial honey, made with the diluted solution of each 12.5%, 25.0%, 50.0%. The result of compared the occasion of added-catalase with not added-catalase about the honey's antibacterial activity on Staphylococcus aureus by agar well diffusion assay were as follows. When the catalase was not added, manuka honey antibacterial activity was superior to chestnut honey's in the diluted honey of 12.5% and on the occasion of the diluted honey of 25.0%, it was approved in the order of manuka honey > chestnut honey > multiflower honey 〉 native honey > clover honey > acassia honey and the occasion of the diluted honey of 50.0%, it was approved in the order of manuka honey > chestnut honey > canola honey > native honey > multiflower honey > clover honey > acassia honey(p > 0.01). The clear zone representing inhibition of growth in diluted honey of 12.5, 25.0, 50.0 % with non-treat catalase ranged from 5.85 to 6.60, 4.26 to 8.27, 5.24 to 11.49 mm, respectively. When the catalase was added, antibacterial activity only showed in the manuka honey of 12.5% and on the occasion of the diluted honey of 25.0%, manuka honey's antibacterial activity was superior to chestnut honey (p > 0.01). On the occasion of the diluted honey of 50.0%, antibacterial activity was high in the order of manuka honey > chestnut honey > clover honey > canola honey > native honey(p > 0.01). The correlation was approved significantly among the manuka honey, chestnut honey, clover honey, canola honey and native honey.

Antibacterial activity of isolated bacteria against Propionibacterium acnes causing acne vulgaris (여드름을 유발하는 Propionibacterium acnes에 대한 분리 세균들의 항균활성)

  • Lee, Da-Sol;Song, Hong-Gyu
    • Korean Journal of Microbiology
    • /
    • v.54 no.3
    • /
    • pp.272-279
    • /
    • 2018
  • This study was carried out to evaluate antimicrobial activity of isolated bacteria from various soils against two strains of Propionibacterium acnes causing acne vulgaris. Among several hundreds of bacterial strains, Paenibacillus elgii DS381, Paenibacillus elgii DS1515, Burkholderia gladioli DS518, and Streptomyces lienomycini DS620 showed high antimicrobial activities against the strains of P. acnes. All isolated bacteria showed 15.5 to 34.3 mm inhibition zone diameter in an agar well diffusion test, and especially DS620 showed the highest inhibition zone diameters (28.3~34.3 mm). Antibacterial substances were expected as lipopeptide (pelgipeptin and paenipeptin) from strains DS381 and DS1515, protease from DS518, and anthracycline antibiotic (daunomycinone) from DS620, and all these showed very low minimum inhibitory concentration [DS381 and DS1515 (0.078 mg/ml), DS518 (0.312 mg/ml), DS620 (0.000078 mg/ml)] against P. acnes. These antibacterial substances could completely kill P. acnes within 24 h in a time-kill assay. These results suggest that antibacterial substances produced by these bacteria may be utilized as useful antimicrobial agent against P. acnes and treatment medicine for acne vulgaris.