• Title/Summary/Keyword: affinity filtration chromatography

Search Result 118, Processing Time 0.023 seconds

Purification and Characterization of a Novel Serine Protease with Fibrinolytic Activity from Tenodera sinensis (Chinese Mantis) Egg Cases

  • Cho, So-Yean;Hahn, Bum-Soo;Kim, Yeong-Shik
    • BMB Reports
    • /
    • v.32 no.6
    • /
    • pp.579-584
    • /
    • 1999
  • Mantis egg fibrolase (MEF-3) was purified from the egg cases of Tenodera sinensis using ammonium sulfate fractionation, gel filtration on Bio-Gel P-60, DEAE Affi-Gel blue gel affinity chromatogragphy, and MONO-Q anion-exchange chromatography. This protease had a molecular weight of 35,600 Da as determined by SDS-polyacrylamide gel electrophoresis under reducing conditions and its isoelectric point was 6.0. The N-terminal amino acids sequence was Ala-Thr-Gln-Asp-Asp-Ala-Pro-Pro-Gly-Leu-Ala-Arg-Arg. This sequence was 80% homologous to the serine protease from Tritirachium album. MEF-3 readily digested the ${\alpha}$-and ${\beta}$-chains of fibrinogen and more slowly the ${\gamma}$-chains. It showed strong proteolytic and fibrinolytic activities. Phenylmethanesulfonyl fluoride and chymostatin inhibited its proteolytic activity, while EDTA, EGTA, cysteine, ${\beta}$-mercaptoethanol, elastinal, tosyl-lysine chloromethylketone, and tosyl-amido-2-phenylethyl chloromethyl ketone did not affect its proteolytic activity. Among the chromogenic protease substrates, the most sensitive one to the hydrolysis of MEF-3 was benzoyl-Phe-Val-Arg-p-nitroanilide. Based on these experimental results, we speculated that MEF-3 is a serine protease with a strong fibrin(ogen)olytic activity.

  • PDF

Functional Identification of an 8-Oxoguanine Specific Endonuclease from Thermotoga maritima

  • Im, Eun-Kyoung;Hong, Chang-Hyung;Back, Jung-Ho;Han, Ye-Sun;Chung, Ji-Hyung
    • BMB Reports
    • /
    • v.38 no.6
    • /
    • pp.676-682
    • /
    • 2005
  • To date, no 8-oxoguanine-specific endonuclease-coding gene has been identified in Thermotoga maritima of the order Thermotogales, although its entire genome has been deciphered. However, the hypothetical protein Tm1821 from T. maritima, has a helix-hairpin-helix motif that is considered to be important for DNA binding and catalytic activity. Here, Tm1821 was overexpressed in Escherichia coli and purified using Ni-NTA affinity chromatography, protease digestion, and gel filtration. Tm1821 protein was found to efficiently cleave an oligonucleotide duplex containing 8-oxoguanine, but Tm1821 had little effect on other substrates containing modified bases. Moreover, Tm1821 strongly preferred DNA duplexes containing an 8-oxoguanine:C pair among oligonucleotide duplexes containing 8-oxoguanine paired with four different bases (A, C, G, or T). Furthermore, Tm1821 showed AP lyase activity and Schiff base formation with 8-oxoguanine in the presence of $NaBH_4$, which suggests that it is a bifunctional DNA glycosylase. Tm1821 protein shares unique conserved amino acids and substrate specificity with an 8-oxoguanine DNA glycosylase from the hyperthermophilic archaeon. Thus, the DNA recognition and catalytic mechanisms of Tm1821 protein are likely to be similar to archaeal repair protein, although T. maritima is an eubacterium.

Expression and Purification of Toll-like Receptor 9 Cytoplasmic Domain in Pichia patoris (Pichia pastoris로부터 Toll-like Receptor 9의 세포 내 도메인 단백질의 발현과 순수분리 정제)

  • Lee Kyun-Young;Lee Kon-Ho
    • Journal of Plant Biotechnology
    • /
    • v.32 no.4
    • /
    • pp.269-273
    • /
    • 2005
  • Toll-like receptors (TLR) are important components of innate immunity in the defense against pathogens. TLRs recognize pathogen-associated common molecular patterns. TLRs are similar to the receptors involved in defense responses in plants. TLR protein is a type 1 membrane protein, consisting of an extracellular domain containing leucine-rich repeats and a cytoplasmic domain. The cytoplasmic domain delivers ligand recognition signals that result in production of anti-microbial agents. The cytoplasmic domain (amino acid 858-1032) of toll-like receptor 9 has been expressed using methylotrophic yeast Pichia pastoris. The protein expression was confirmed by Western-blot, N-terminal sequencing and MALDl-TOF mass spectrometry. The proteins have been purified by nickel affinity, cation exchange and gel-filtration chromatography.

Purification and Characterization of 2,3-Dihydroxybiphenyl 1,2-Dioxygenase from Comamonas sp. SMN4

  • Lee, Na-Ri;Lee, Jang-Mi;Min, Kyung-Hee;Kwon, Dae-Young
    • Journal of Microbiology and Biotechnology
    • /
    • v.13 no.4
    • /
    • pp.487-494
    • /
    • 2003
  • 2,3-Dihydroxybiphenyl 1,2-dioxygenase (23DBDO), an enzyme of the biphenyl biodegradation pathway encoded by the bphC gene of Comnmonas sp. SMN4, was expressed and purified using column chromatographies. SDS-PAGE of purified 23DBDO showed a single band with a molecular mass of 32 kDa, which was consistent with the data from the gel filtration chromatography (GFC). The purified enzyme exhibited a maximum 23DBDO activity at pH 9.0 and was stable at pH 8.0. The enzyme showed maximum activity at $40^{\circ}C$ and maintained activity at $30^{\circ}C$ for 24 h. Kinetic parameters represented by Michaelis-Menten constants such as $K_m\;and\;V_{max}$ values for various substrates were determined by Lineweaver-Burk plots: The purified enzyme 23DBDO from Comamonas sp. SMN4 had the highest catalytic activity for 2,3-dihydroxybiphenyl and 3-methylcatechol, and had very poor activity with catechol and 4-methylcatechol.

Identificaiton of the dITP- and XTP-Hydrolyzing Protein from Escherichia coli

  • Chung, Ji-Hyung;Park, Hyun-Young;Lee, Jong-Ho;Jang, Yang-Soo
    • BMB Reports
    • /
    • v.35 no.4
    • /
    • pp.403-408
    • /
    • 2002
  • A hypothetical 21.0 kDa protein (ORF O197) from Escherichia coli K-12 was cloned, purified, and characterized. The protein sequence of ORF O197(termed EcO197) shares a 33.5% identity with that of a novel NTPase from Methanococcus jannaschii. The EcO197 protein was purified using Ni-NTA affinity chromatography, protease digestion, and gel filtration column. It hydrolyzed nucleoside triphosphates with an O6 atom-containing purine base to nucleoside monophosphate and pyrophosphate. The EcO197 protein had a strong preference for deoxyinosine triphosphate (dITP) and xanthosine triphosphate (XTP), while it had little activity in the standard nucleoside triphosphates (dATP, dCTP, dGTP, and dTTP). These aberrant nucleotides can be produced by oxidative deamination from purine nucleotides in cells; they are potentially mutagenic. The mutation protection mechanisms are caused by the incorporation into DNA of unwelcome nucleotides that are formed spontaneously. The EcO197 protein may function to eliminate specifically damaged purine nucleotide that contains the 6-keto group. This protein appears to be the first eubacterial dITP-and XTP-hydrolyzing enzyme that has been identified.

Purification and Characterization of Trypsins Affecting on the Autolysis of Shrimp, Penaeus japonicus

  • KIM Hyeung-Rak;KIM Doo-Sang;AHN Chang-Bum;PYEUN Jae-Hyeung
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.29 no.6
    • /
    • pp.797-804
    • /
    • 1996
  • Two trypsins were purified from shrimp hepatopancreas through ammonium sulfate fractionation, Q-Sepharose ionic exchange, benzamidine Sepharose-6B affinity, and Sephacryl S-300 gel chromatography. Both enzymes had a single polypeptide chain with a molecular weight (M.W.) of 32 kDa by sodium dodecylsulfate polyacrylamide gel electrophoresis (SOS-PAGE), although trypsin A and B were estimated to be a molecular weight of 27.2 and 22.8 kDa, respectively, using Sephacryl S-300 gel filtration. Both trypsins had similar amino acid compositions and rich in glycine, valine, alanine, aspartic acid, and glutamic acid, but low in methionine and basic amino acids. Both enzymes were completely inactivated by soybean trypsin inhibitor (SBTI), phenylmethylsulfonyl fluoride (PMSF), tosyl-L-lysine chloromethyl ketone (TLCK), benzamidine, leupeptin, however, not affected by tosyl-L-phenylalanine chloromethyl ketone (TPCK) and pepstatin.

  • PDF

Effect of Lipid Metabolism in Viscum album Lectin on Rats (겨우살이 Lectin이 지질대사에 미치는 영향)

  • Chang, Choul Soo;Hwang, Seock Yeon
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.36 no.2
    • /
    • pp.131-136
    • /
    • 2004
  • This study was carried out to investigate effect of lipid metabolism in Viscum album lectin on rats. The lectin was purified by sepharose 4B affinity chromatography and gel filtration using sephadex G-150 with plant material from Viscum album collected in Mt. Duk Yui. After 72 h of $CCl_4$ injection (in olive oil, 1:1, 2 mg/kg) there was a significant increase in serum total cholesterol and triglycerige levels relative to the control group. However, treatment of both Viscum album and purified lectin were significantly decreased lipid parameters against the $CCl_4$-induced. Histological observation basically supported the result obtained from serum lipid assay. The livers of rats challenged with $CCl_4$ produced a marked increase of cytoplasmic vacuoles in number, while the number of necrotic cells and swollen hepatocytes did not change significnatly. Rats administered olive oil alone did not alter the normal hepatic architecture. Histological observation of the liver section in rats treated 72 h with either Viscum album purified lectin or $CCl_4$-induced liver lipogenesis showed decreased numbers of cytoplasmic vaculoes and necrotic cells. The normal hepatic architectural pattern was observed in Hematoxylin-eosin stain. These results suggest that Viscum album lectin has a possible protective effect of lipid metabolim in rats.

  • PDF

Preparation of Agarose from Gelidium amansii for Gel Electrophoresis using Various Purification Methods and Its Resolution Characteristics for DNA (다양한 정제방법에 의한 전기영동용 한천유래 아가로즈의 제조 및 DNA분리 특성)

  • Do, Jeong-Ryong;Oh, Se-Wook
    • Korean Journal of Food Science and Technology
    • /
    • v.31 no.1
    • /
    • pp.110-114
    • /
    • 1999
  • The present study was conducted to investigate the preparative methods of agarose for gel electrophoresis from agar. Naturally occuring agar consists of two main polysaccharides, the neutral polysaccharide agarose and the acid sulphated polysaccharide agaropectin. The sulphate and carboxyl functions of the agar are accumulated in the agaropectin. The hydrophilic, non-ionogenic, rigid and transparent gel matrix of the agarose was found to be suitable for gel electrophoresis gel filtration and affinity chromatography. Agar was purified by chitosan treatment, cetylpyridinium chloride (CPC) treatment, and polyethylene glycol (PEG) treatment. Yields of agarose purified from agar with chitosan, CPC and PEG were 56.7%, 55.6% and 62.3%. It was proper to treat with chitosan in preparative methods of agarose for gel electrophoresis from agar.

  • PDF

Purification and NMR Studies of RNA Polymerase II C-Terminal Domain Phosphatase 1 Containing Ubiquitin Like Domain

  • Ko, Sung-Geon;Lee, Young-Min;Yoon, Jong-Bok;Lee, Weon-Tae
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.5
    • /
    • pp.1039-1042
    • /
    • 2009
  • RNA polymerase II C-terminal domain phosphatase 1 containing ubiquitin like domain (UBLCP1) has been identified as a regulatory molecule of RNA polymerase II. UBLCP1 consists of ubiquitin like domain (UBL) and phosphatase domain homologous with UDP and CTD phosphatase. UBLCP1 was cloned into the E.coli expression vectors, pET32a and pGEX 4T-1 with TEV protease cleavage site and purified using both affinity and gel-filtration chromatography. Domains of UBLCP1 protein were successfully purified as 7 mg/500 mL (UBLCP1, 36.78 KDa), 32 mg/500 mL (UBL, 9 KDa) and 8 mg/500 mL (phosphatase domain, 25 KDa) yielded in LB medium, respectively. Isotope-labeled samples including triple-labeled ($^2H/^{15}N/^{13}C$) UBLCP1 were also prepared for hetero-nuclear NMR experiments. $^{15}N-^{1}H$ 2D-HSQC spectra of UBLCP1 suggest that both UBL and phosphatase domain are properly folded and structurally independent each other. These data will promise us further structural investigation of UBLCP1 by NMR spectroscopy and/or X-ray crystallography.

1H, 15N and 13C Backbone Assignments and Secondary Structures of C-ter100 Domain of Vibrio Extracellular Metalloprotease Derived from Vibrio vulnificus

  • Yun, Ji-Hye;Kim, Hee-Youn;Park, Jung-Eun;Cheong, Hae-Kap;Cheong, Chae-Joon;Lee, Jung-Sup;Lee, Weon-Tae
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.10
    • /
    • pp.3248-3252
    • /
    • 2012
  • Vibrio extracellular metalloprotease (vEP), secreted from Vibrio vulnificus, shows various proteolytic function such as prothrombin activation and fibrinolytic activities. Premature form of vEP has an N-terminal (nPP) and a C-terminal (C-ter100) region. The nPP and C-ter100 regions are autocleaved for the matured metalloprotease activity. It has been proposed that two regions play a key role in regulating enzymatic activity of vEP. Especially, C-ter100 has a regulatory function on proteolytic activity of vEP. C-ter100 domain has been cloned into the E. coli expression vectors, pET32a and pGEX 4T-1 with TEV protease cleavage site and purified using gel-filtration chromatography followed by affinity chromatography. To understand how C-ter100 modulates proteolytic activity of vEP, structural studies were performed by heteronuclar multi-dimensional NMR spectroscopy. Backbone $^1H$, $^{15}N$ and $^{13}C$ resonances were assigned by data from standard triple resonance and HCCH-TOCSY experiments. The secondary structures of vEP C-ter100 were determined by TALOS+ and CSI software based on hydrogen/deuterium exchange. NMR data show that C-ter100 of vEP forms a ${\beta}$-barrel structure consisting of eight ${\beta}$-strands.