• 제목/요약/키워드: affinity column chromatography

Search Result 161, Processing Time 0.025 seconds

Isolation and Characterization of Lectin from Aloe vera (Aloe vera 중의 렉틴의 분리 및 특성)

  • Park, Won-Bong;Park, Jeong-Yun
    • Korean Journal of Food Science and Technology
    • /
    • v.31 no.4
    • /
    • pp.899-905
    • /
    • 1999
  • The lectins from mucilaginous jelly and green epidermis of Aloe vera were isolated by gel and affinity chromatography. The molecular weights of the lectins were determined by SDS-PAGE. The molecular weights of the lectins from mucilaginous jelly isolated by Sephadex G-100 were 58.7 kD and 33.3 kD, and that isolated by acid-treated Sepharose 4B was 176.4 kD. The molecular weights of the lectins from epidermis isolated by Sephadex G-100 were 221.1, 54.0 and 32.5 kD respectively. And that isolated by acid-treated Sepharose 4B was 222.0 and 158.0 kD. The agglutinating activity of lectin from jelly was inhibited by D-galactose, lactose and D-galactosamine, but that from epidermis was not inhibited by lactose. The activity was stable at the pH range of $7.0{\sim}9.0$ and at the temperature $0{\sim}60^{\circ}C$.

  • PDF

In vitro Evidence that Purified Yeast Rad27 and Dna2 are not Stably Associated with Each Other Suggests that an Additional Protein(s) is Required for a Complex Formation

  • Bae, Sung-Ho;Seo, Yeon-Soo
    • BMB Reports
    • /
    • v.33 no.2
    • /
    • pp.155-161
    • /
    • 2000
  • The saccharomyces cerevisiae Rad27, a structure-specific endonuclease for the okazaski fragment maturation has been known to interact genetically and biochemically with Dna2, an essential enzyme for DNA replication. In an attempt to define the significance of the interaction between the two enzymes, we expressed and purified both Dna2 and Rad27 proteins. In this report, Rad27 could not form a complex with Dna2 in the three different analyses. The analyses included glycerol gradient sedimentation, protein-column chromatography, and coinfection of baculoviruses followed by affinity purification. This is in striking contrast to the previous results that used crude extracts. These results suggest that the interaction between the two proteins is not sufficiently stable or indirect, and thus requires an additional protein(s) in order for Rad27 and Dna2 to form a stable physical complex. This result is consistent with our genetic findings that Schizosaccharomyces pombe Dna2 is capable of interacting with several proteins that include two subunits of polymerase $\delta$, DNA ligase I, as well as Fen-1. In addition, we found that the N-terminal modification of Rad27 abolished its enzymatic activity. Thus, as suspected, we found that on the basis of the structure determination, N-terminal methionine indeed plays an important role in the nucleolytic cleavage reaction.

  • PDF

Nucleotide Insertion Fidelity of Human Hepatitis B Viral Polymerase

  • Kim, Youn-Hee;Hong, Young-Bin;Suh, Se-Won;Jung, Gu-Hung
    • BMB Reports
    • /
    • v.33 no.2
    • /
    • pp.126-132
    • /
    • 2000
  • The hepadnaviruses replicate their nucleic acid through a reverse transcription step. The MBP-fused HBV polymerase was expressed in E. coli and purified by using amylase affinity column chromatography. The purified protein represented DNA-dependent DNA polymerase activity. In this report, the MBP-HBV polymerase was shown to lack 3'$\rightarrow$5' exonuclease activity, like other retroviral RTs. The ratio of the insertion efficiency for the wrong versus right vase pairs indicates the misinsertion frequency (f). The nucleotide insertion fidelity (1/f), observed with the MBP-HBV polymerase and HIV-1 RT, was between 60 and 54,000, and between 50 and 73,000, respectively, showing that they are in close range. A relatively efficient nucleotide incorporation by the MBP-HBV polymerase was observed with a specificity of three groups: (1) A : T, T : A>C : G, G : C (matched pairs), (2) A : C, C : A>G: T, T : G (purine-pyrimidine and pyrimidine-purine mispairs), and (3) C : C, A : A, G : G, T : T>T : C, C : T>A : G, G : A (purine-purine or pyrimidine-pyrimidine mispairs), and their order is (1)>(2)>(3). The data from the nucleotide insertion fidelity by the MBP-HBV polymerase suggest that the HBV polymerase may be as error-prone as HIV-1 RT.

  • PDF

Alcohol Dehydrogenase Active on Furfuryl Alcohol from Pseudomonas sp. (Part 1) Purification and Properties of Alcohol Dehydrogenase (Pseudomonas 속균이 생산하는 Alcohol Dehydrogenase에 관한 연구 (제1보) Alcohol Dehydrogenase 정제와 일반적성질)

  • ;Hirosake Okadar
    • Microbiology and Biotechnology Letters
    • /
    • v.8 no.1
    • /
    • pp.27-32
    • /
    • 1980
  • We isolated a strain of Pseudomonas sp. from soil to utilize furfuryl alcohol as a carton source by enrichment culture. Alcohol dehydrogenase from this bacteria was purified 700-fold by Sephadex G-200 and affinity column chromatography to be homogeneous by electrophoresis and analytical centrifugation. This enzyme had a molecular weight of 120,000 and was composed of four subunits consisting of 266 amino acid residues. The optimal pH of the enzyme was pH 8.5 to 9, and the optimal temperature was, 45$^{\circ}C$. This enzyme was stable at 55$^{\circ}C$, but lost 80% of its activity in 10min at 6$0^{\circ}C$.

  • PDF

Purification and Characterization of 2,3-Dihydroxybiphenyl 1,2-Dioxygenase from Comamonas sp. SMN4

  • Lee, Na-Ri;Lee, Jang-Mi;Min, Kyung-Hee;Kwon, Dae-Young
    • Journal of Microbiology and Biotechnology
    • /
    • v.13 no.4
    • /
    • pp.487-494
    • /
    • 2003
  • 2,3-Dihydroxybiphenyl 1,2-dioxygenase (23DBDO), an enzyme of the biphenyl biodegradation pathway encoded by the bphC gene of Comnmonas sp. SMN4, was expressed and purified using column chromatographies. SDS-PAGE of purified 23DBDO showed a single band with a molecular mass of 32 kDa, which was consistent with the data from the gel filtration chromatography (GFC). The purified enzyme exhibited a maximum 23DBDO activity at pH 9.0 and was stable at pH 8.0. The enzyme showed maximum activity at $40^{\circ}C$ and maintained activity at $30^{\circ}C$ for 24 h. Kinetic parameters represented by Michaelis-Menten constants such as $K_m\;and\;V_{max}$ values for various substrates were determined by Lineweaver-Burk plots: The purified enzyme 23DBDO from Comamonas sp. SMN4 had the highest catalytic activity for 2,3-dihydroxybiphenyl and 3-methylcatechol, and had very poor activity with catechol and 4-methylcatechol.

Purification and Characterization of an Exo-polygalacturonase from Botrytis cinerea

  • Lee, Tae-Ho;Kim, Byung-Young;Chung, Young-Ryun;Lee, Sang-Yeol;Lee, Chang-Won;Kim, Jae-Won
    • Journal of Microbiology
    • /
    • v.35 no.2
    • /
    • pp.134-140
    • /
    • 1997
  • Botrytis cinerea T91-1 has been shown to produce at least four different polygalacturonases into a liquid medium containing citrus pectin, a carbon sousrce. One of the enzymes, which had an apparent molecular weight of 66 kDa estimated by denatured polyacrylamide gel electrophoresis, was purified to electrophoretic homogeneity by a series of procedures including a cetone precipitation, ion exchange, heparin affinity, and reverse phase column chromatographies. The molecular weight of native enzyme was determined to be 64 kDa by gel permeation chromatography indicating the enzyme to be a single polypeptide chain. By viscometric analysis, the enzyme was revealed as exo-polygalacturonase. The enzyme activity was inhibited by divalent cations such as $Ca^{2+}$, $Mg^{2+}$, and Cu$^{2+}$. Km and Vmax for polygalacturonic acid hydrolysis were 0.33 mg/ml and 28.6 nM/min, respectively. The optimum temperature for enzymatic activity was 5$0^{\circ}C$. And the enzyme showed optimal pH values between 4.0 and 5.0. The enzyme was stable upto 12 hours in the range of pH 3 to 8 and at temperature below 3$0^{\circ}C$.

  • PDF

Identificaiton of the dITP- and XTP-Hydrolyzing Protein from Escherichia coli

  • Chung, Ji-Hyung;Park, Hyun-Young;Lee, Jong-Ho;Jang, Yang-Soo
    • BMB Reports
    • /
    • v.35 no.4
    • /
    • pp.403-408
    • /
    • 2002
  • A hypothetical 21.0 kDa protein (ORF O197) from Escherichia coli K-12 was cloned, purified, and characterized. The protein sequence of ORF O197(termed EcO197) shares a 33.5% identity with that of a novel NTPase from Methanococcus jannaschii. The EcO197 protein was purified using Ni-NTA affinity chromatography, protease digestion, and gel filtration column. It hydrolyzed nucleoside triphosphates with an O6 atom-containing purine base to nucleoside monophosphate and pyrophosphate. The EcO197 protein had a strong preference for deoxyinosine triphosphate (dITP) and xanthosine triphosphate (XTP), while it had little activity in the standard nucleoside triphosphates (dATP, dCTP, dGTP, and dTTP). These aberrant nucleotides can be produced by oxidative deamination from purine nucleotides in cells; they are potentially mutagenic. The mutation protection mechanisms are caused by the incorporation into DNA of unwelcome nucleotides that are formed spontaneously. The EcO197 protein may function to eliminate specifically damaged purine nucleotide that contains the 6-keto group. This protein appears to be the first eubacterial dITP-and XTP-hydrolyzing enzyme that has been identified.

Enzymatic N-glycan analysis of 31 kDa molecule in plerocercoid of Spirometra mansoni (sparganum) and its antigenicity after chemical oxidation

  • Chung, Young-Bae;Kong, Yoon;Yang, Hyun-Jong
    • Parasites, Hosts and Diseases
    • /
    • v.42 no.2
    • /
    • pp.57-60
    • /
    • 2004
  • A highly specific antigenic protein of 31 kDa from plerocercoid of Spirometra mansoni (sparganum) was obtained by gelatin affinity and Mono Q anion-exchange column chromatography. The purified 31 kDa protein was subjected to N-glycan enzymatic digestion for structural analysis. The relative electrophoretic mobility was analyzed by SDS-PAGE, before and after digestion. On SDS-PAGE after enzymatic digestion, the 31 kDa protein showed a molecular shift of approximately 2 kDa, which indicated the possession of complex N-linked oligosaccharides (N-glycosidase F sensitive) but not of high-mannose oligosaccharides (endo-beta-N-acetylglucosaminidase H, non-sensitive). Chemically periodated 31 kDa protein showed statistically non-significant changes with human sparganosis sera by enzyme linked immunosorbent assay (ELISA). Therefore, the dominant epitopes of the 31 kDa molecule in human sparganosis were found to be mainly polypeptide, while N-glycans of the antigenic molecule in sparganum was minimal in anti-carbohydrate antibody production.

Resistance Mechanism of Acinetobacter spp. Strains Resistant to DW-116, a New Quinolone

  • Choi, Keum-Hwa;Baek, Moon-Chang;Kim, Byong-Kak;Choi, Eung-Chil
    • Archives of Pharmacal Research
    • /
    • v.21 no.3
    • /
    • pp.310-314
    • /
    • 1998
  • DW-116 is a new fluoroquinolone antimicrobial agent with a broad spectrum. In order to elucidate the resistance mechanism to DW-116 in Acinetobacter spp. bacteria, total chromosomal DNA was isolated from 10 strains of Acinetobacter spp. resistant to DW-116. Quinolone resistance determinant region (QRDR) of DNA gyrase gene was amplified by PCR. The 345 bp nucleotide fragment yielded was inserted into pKF 3 which was used as the vector. Comparisons of the DNA sequences of 8 strains with that of the wild type strain revealed a Ser-83 to Leu mutation in mutants and all ten strains contained one silent mutation$(T{\rightarrow}G)$in QRDR. From Acinetobacter MB4-8 strain, DNA gyrase was isolated and purified, through novobiocin-sepharose, heparin-sepharose affinity column chromatography. The enzyme was composed of two subunits and the molecular mass of subunits A and B were 75.6 and 51.9 kDa, respectively. The supercoiling activity of the reconstituted DNA gyrase composed of subunit A from Acinetobacter MB4-8 and subunit B from E. coli was not inhibited by $128{\mu}\textrm{g}$ml of ciprofloxacin. It might be said that one of the resistance mechanisms to DW-116 in Acinetohacter MB4-8 was subunit A alteration of DNA gyrase.

  • PDF

Distribution of Chitinases in Rice (Oryza sativa L)Seed and Characterization of a Hull-Specific Chitinase

  • Baek, Je-Hyun;Han, Beom-Ku;Jo, Do-Hyun
    • BMB Reports
    • /
    • v.34 no.4
    • /
    • pp.310-315
    • /
    • 2001
  • The uneven distribution of acidic and basic chitinases in different parts of rice seed, and also the characterization of hull-specific chitinases, are reported here. After extraction of chitinases from polished rice, bran, and rice hulls, the chitinases were separated into acidic and basic fractions, according to their behavior on an anion exchanger column. Both fractions from different parts of rice seed showed characteristic activity bands on SDS-PAGE that contained 0.01% glycol chitin. The basic chitinases from rice hulls were further purified using chitin affinity chromatography. The chitinase, specific to rice hulls (RHBC), was 88-fold purified with a 1.3% yield. RHBC has an apparent molecular weight of 22.2 kDa on SDS-PAGE. The optimal pH and temperature were 4.0 and $35^{\circ}C$, respectively. With [$^3H$]chitin as a substrate, RHBC has $V_{max}$ of 13.51 mg/mg protein/hr and $K_m$ of 1.36 mg/ml. This enzyme was an endochitinase devoid of ${\beta}$-1,3-glucanase, lysozyme, and chitosanase activities.

  • PDF