• 제목/요약/키워드: affine homogeneous domain

검색결과 4건 처리시간 0.016초

NONDEGENERATE AFFINE HOMOGENEOUS DOMAIN OVER A GRAPH

  • Choi, Yun-Cherl
    • 대한수학회지
    • /
    • 제43권6호
    • /
    • pp.1301-1324
    • /
    • 2006
  • The affine homogeneous hypersurface in ${\mathbb{R}}^{n+1}$, which is a graph of a function $F:{\mathbb{R}}^n{\rightarrow}{\mathbb{R}}$ with |det DdF|=1, corresponds to a complete unimodular left symmetric algebra with a nondegenerate Hessian type inner product. We will investigate the condition for the domain over the homogeneous hypersurface to be homogeneous through an extension of the complete unimodular left symmetric algebra, which is called the graph extension.

DIFFERENTIABILITY OF QUASI-HOMOGENEOUS CONVEX AFFINE DOMAINS

  • JO KYEONGHEE
    • 대한수학회지
    • /
    • 제42권3호
    • /
    • pp.485-498
    • /
    • 2005
  • In this article we show that every quasi-homogeneous convex affine domain whose boundary is everywhere differentiable except possibly at a finite number of points is either homogeneous or covers a compact affine manifold. Actually we show that such a domain must be a non-elliptic strictly convex cone if it is not homogeneous.

ASYMPTOTIC FOLIATIONS OF QUASI-HOMOGENEOUS CONVEX AFFINE DOMAINS

  • Jo, Kyeonghee
    • 대한수학회논문집
    • /
    • 제32권1호
    • /
    • pp.165-173
    • /
    • 2017
  • In this paper, we prove that the automorphism group of a quasi-homogeneous properly convex affine domain in ${\mathbb{R}_n}$ acts transitively on the set of all the extreme points of the domain. This set is equal to the set of all the asymptotic cone points coming from the asymptotic foliation of the domain and thus it is a homogeneous submanifold of ${\mathbb{R}_n}$.

AFFINE HOMOGENEOUS DOMAINS IN THE COMPLEX PLANE

  • Kang-Hyurk, Lee
    • Korean Journal of Mathematics
    • /
    • 제30권4호
    • /
    • pp.643-652
    • /
    • 2022
  • In this paper, we will describe affine homogeneous domains in the complex plane. For this study, we deal with the Lie algebra of infinitesimal affine transformations, a structure of the hyperbolic metric involved with affine automorphisms. As a consequence, an affine homogeneous domain is affine equivalent to the complex plane, the punctured plane or the half plane.