• 제목/요약/키워드: affiliation network

검색결과 43건 처리시간 0.022초

대규모 워크플로우 소속성 네트워크를 위한 근접 중심도 랭킹 알고리즘 (An Estimated Closeness Centrality Ranking Algorithm for Large-Scale Workflow Affiliation Networks)

  • 이도경;안현;김광훈
    • 인터넷정보학회논문지
    • /
    • 제17권1호
    • /
    • pp.47-53
    • /
    • 2016
  • 워크플로우 소속성 네트워크는 워크플로우 기반 조직의 수행자와 업무 사이의 연관관계를 나타내는 소셜 네트워크의 한 형태이며, 이를 기반으로 연결 중심도, 근접 중심도, 사이 중심도, 위세 중심도 등과 같은 다양한 분석 기법들이 제안되었다. 특히, 전사적 워크플로우 모델을 기반으로 하는 소속성 네트워크의 근접 중심도 분석은 워크플로우 소속성 네트워크의 규모가 증가함에 따라, 중심도 및 랭킹 계산의 시간 복잡도 문제점을 가진다는 것을 발견하였다. 본 논문에서는 근접 중심도 분석의 시간 복잡도 문제를 개선하기 위해, 근사치 추정 방법을 이용한 워크플로우 기반 소속성 네트워크의 추정 근접 중심도 기반 랭킹 알고리즘을 제안한다. 노드의 타입이 수행자인, 워크플로우 예제 모델을 추정 근접 중심도 기반 랭킹 알고리즘에 적용한 성능 분석을 실시하였다. 수행 결과, 네트워크 규모 관점에서의 정확도는 평균적으로 47.5% 향상되었고, 샘플 모집단 비율 관점에서는 평균적으로 9.44%정도의 향상된 수치를 보였다. 또한, 추정 근접 중심도 랭킹 알고리즘의 평균 계산 시간은 네트워크의 노드 수가 2400개, 샘플 모집단의 비율이 30%일 때, 기존 근접 중심도 랭킹 알고리즘의 평균 계산 시간보다 82.40%의 높은 성능을 보였다.

워크플로우 협력네트워크 지식 발견 알고리즘 (A Workflow-based Affiliation Network Knowledge Discovery Algorithm)

  • 김광훈
    • 인터넷정보학회논문지
    • /
    • 제13권2호
    • /
    • pp.109-118
    • /
    • 2012
  • 본 논문에서는 워크플로우 협력네트워크 지식의 발견 알고리즘을 제안한다. 즉, 워크플로우 인텔리전스 (또는 비즈니스 프로세스 인텔리전스) 기술은 워크플로우 모델들과 그의 실행이력으로부터 일련의 지식을 발견, 분석, 모니터링 및 제어, 그리고 예측하는 세부기법들로 구성되는데, 본 논문에서는 워크플로우 모델을 구성하는 액티버티들과 그들의 수행자들간의 협력네트워크 지식을 "워크 플로우 협력네크워크 지식"라고 정의하고, 그의 발견기법인 정보제어넷(ICN, information control net)기반 워크플로우 협력네트워크 지식 발견 알고리즘을 제안한다. 특히, 제안한 알고리즘의 적용 사례를 통해 특정 워크플로우 모델로부터 해당 워크플로우 협력네트워크 지식을 성공적으로 생성할 수 있음을 증명함으로써 본 논문에서 제안한 알고리즘의 정확성 및 적합성을 검증한다.

Modeling, Discovering, and Visualizing Workflow Performer-Role Affiliation Networking Knowledge

  • Kim, Haksung;Ahn, Hyun;Kim, Kwanghoon Pio
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제8권2호
    • /
    • pp.691-708
    • /
    • 2014
  • This paper formalizes a special type of social networking knowledge, which is called "workflow performer-role affiliation networking knowledge." A workflow model specifies execution sequences of the associated activities and their affiliated relationships with roles, performers, invoked-applications, and relevant data. In Particular, these affiliated relationships exhibit a stream of organizational work-sharing knowledge and utilize business process intelligence to explore resources allotting and planning knowledge concealed in the corresponding workflow model. In this paper, we particularly focus on the performer-role affiliation relationships and their implications as organizational and business process intelligence in workflow-driven organizations. We elaborate a series of theoretical formalisms and practical implementation for modeling, discovering, and visualizing workflow performer-role affiliation networking knowledge, and practical details as workflow performer-role affiliation knowledge representation, discovery, and visualization techniques. These theoretical concepts and practical algorithms are based upon information control net methodology for formally describing workflow models, and the affiliated knowledge eventually represents the various degrees of involvements and participations between a group of performers and a group of roles in a corresponding workflow model. Finally, we summarily describe the implications of the proposed affiliation networking knowledge as business process intelligence, and how worthwhile it is in discovering and visualizing the knowledge in workflow-driven organizations and enterprises that produce massively parallel interactions and large-scaled operational data collections through deploying and enacting massively parallel and large-scale workflow models.

워크플로우 기반 인적 자원 소속성 분석을 위한 업무-수행자 이분 행렬 생성 알고리즘 (An Activity-Performer Bipartite Matrix Generation Algorithm for Analyzing Workflow-supported Human-Resource Affiliations)

  • 안현;김광훈
    • 인터넷정보학회논문지
    • /
    • 제14권2호
    • /
    • pp.25-34
    • /
    • 2013
  • 본 논문에서는 워크플로우 기반 인적 자원의 소속성 분석을 위한 업무-수행자 이분 행렬 생성 알고리즘을 제안한다. 워크플로우 기반 인적 자원은 워크플로우 관리 시스템에 의해 관리되는 조직의 모든 수행자들을 말하며, 워크플로우 모델의 실행 과정에서 특정 업무 집합에 참여하게 된다. 이러한 워크플로우 모델에 정의된 수행자들과 업무들과의 소속성을 나타내는 소셜 네트워크를 업무-수행자 소속성 네트워크라 정의하였으며, 본 논문에서 제안하는 알고리즘은 워크플로우 모델로부터 발견된 업무-수행자 소속성 네트워크 모델(APANM)에 대한 이분 행렬을 생성하기 위한 알고리즘이다. 결론적으로, 알고리즘에 의해 생성된 업무-수행자 이분 행렬은 중심성(centrality), 밀집도(density), 상관 관계(correlation)와 같은 다양한 소셜 네트워크 관련 속성들을 분석하는데 적용될 수 있으며, 이를 통해 워크플로우 기반 인적 자원의 소속성에 대한 유용한 지식을 획득할 수 있다.

인적 자원 소속성 분석을 위한 역할-수행자 이분 행렬 생성 알고리즘 (A Role-Performer Bipartite Matrix Generation Algorithm for Human Resource Affiliations)

  • 김학성
    • 디지털콘텐츠학회 논문지
    • /
    • 제19권1호
    • /
    • pp.149-155
    • /
    • 2018
  • 본 논문에서는 BPM기반 인적 자원 소속성 분석을 위한 역할-수행자 이분 행렬 생성 알고리즘을 제안한다. 제안된 알고리즘은 정보제어넷 기반의 비즈니스 프로세스 모델로부터 역할-수행자 소속 관계를 추출하는 단계와 이로부터 역할-수행자 이분 행렬을 생성하는 단계로 구성된다. 결론적으로 생성된 행렬은 역할-수행자 소속성 네트워킹 지식을 발견하기 위한 데이터 구조로서 활용될 뿐 아니라 소셜 네트워크 분석 기법을 적용하여 BPM 기반 인적 자원 소속성 분석 결과를 도출할 수 있다.

Using Support Vector Machine to Predict Political Affiliations on Twitter: Machine Learning approach

  • Muhammad Javed;Kiran Hanif;Arslan Ali Raza;Syeda Maryum Batool;Syed Muhammad Ali Haider
    • International Journal of Computer Science & Network Security
    • /
    • 제24권5호
    • /
    • pp.217-223
    • /
    • 2024
  • The current study aimed to evaluate the effectiveness of using Support Vector Machine (SVM) for political affiliation classification. The system was designed to analyze the political tweets collected from Twitter and classify them as positive, negative, and neutral. The performance analysis of the SVM classifier was based on the calculation of metrics such as accuracy, precision, recall, and f1-score. The results showed that the classifier had high accuracy and f1-score, indicating its effectiveness in classifying the political tweets. The implementation of SVM in this study is based on the principle of Structural Risk Minimization (SRM), which endeavors to identify the maximum margin hyperplane between two classes of data. The results indicate that SVM can be a reliable classification approach for the analysis of political affiliations, possessing the capability to accurately categorize both linear and non-linear information using linear, polynomial or radial basis kernels. This paper provides a comprehensive overview of using SVM for political affiliation analysis and highlights the importance of using accurate classification methods in the field of political analysis.

KVN/KaVA AGN WG report - Preparation of KVN/KaVA AGN Key Science

  • Sohn, Bong Won;Kino, Motoki
    • 천문학회보
    • /
    • 제39권2호
    • /
    • pp.115-115
    • /
    • 2014
  • First, We will briefly introduce early science results of AGN observations with KVN and KaVA. KaVA is the combined array of the Korean VLBI network (KVN) and VLBI Exploration of Radio Astronomy (VERA). These include KaVA monitoring of M87, Sgr A* and a few bright blazars and KVN Search for circular polarized Blazars. Furthermore, we will present our future plan of monitoring observation of Sgr A* and M87 with KaVA and Low Radio Power AGN multi frequency polarization survey with KVN. Because of the largeness of their centralsuper-massive black holes, we select them as top-priority sources of our key science program (KSP). The main science goals of the KaVA KSP are (1) mapping the velocity field of the M87 jet and testing magnetically-driven-jet paradigm, and (2) obtaining tightest constraints on physical properties of radio emitting region in Sgr A. High sensitivity achieved through simultaneous multifrequency phase referencing technique of KVN will allow us to explore Low Radio Power AGN cores which build majority of AGNs and therefore are important for undestanding the evolution of AGNs and of their hosts.

  • PDF

Social Network Analysis and Its Applications for Authors and Keywords in the JKSS

  • Kim, Jong-Goen;Choi, Soon-Kuek;Choi, Yong-Seok
    • Communications for Statistical Applications and Methods
    • /
    • 제19권4호
    • /
    • pp.547-558
    • /
    • 2012
  • Social network analysis is a graphical technique to search the relationships and characteristics of nodes (people, companies, and organizations) and an important node for positioning a visualized social network figure; however, it is difficult to characterize nodes in a social network figure. Therefore, their relationships and characteristics could be presented through an application of correspondence analysis to an affiliation matrix that is a type of similarity matrix between nodes. In this study, we provide the relationships and characteristics around authors and keywords in the JKSS(Journal of the Korean Statistical Society) of the Korean Statistical Society through the use of social network analysis and correspondence analysis.

의료기관의 민간보험사와의 네트워크 구축 의향 (A Study on Hospital's Intention to Join Network with Private Health Insurance)

  • 권영대;심재선
    • 한국병원경영학회지
    • /
    • 제11권4호
    • /
    • pp.63-81
    • /
    • 2006
  • This study was conducted to evaluate needs and intention of hospitals and clinics to join network with private health insurance, and to discover obstacles of participation of the networks. We carried out the questionnaire survey of the network managers of 236 medical institutions between December 27th, 2005 and January 25th, 2006. The result showed that the participation intention of network were different to the type of hospitals. Primary care clinics answered that participation intention and possibility were low. Secondary care hospitals was relatively affirmative regarding a network participation. Tertiary hospitals responded that they need the network with private health insurance, but participation possibility was lower than needs. The reason is that they worried about the side effect of the network with private health insurance. Depending on the type of hospitals, expected benefits from networking with private health insurance were different. We found that hospitals which already had affiliation with other hospitals answered in the affirmative regarding the network with private health insurance. In conclusion, to increase the effectiveness of network systems between hospital and private health insurance, the network is expected to consider different needs of the each hospital.

  • PDF

A Social Motivation-aware Mobility Model for Mobile Opportunistic Networks

  • Liu, Sen;Wang, Xiaoming;Zhang, Lichen;Li, Peng;Lin, Yaguang;Yang, Yunhui
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제10권8호
    • /
    • pp.3568-3584
    • /
    • 2016
  • In mobile opportunistic networks (MONs), human-carried mobile devices such as PDAs and smartphones, with the capability of short range wireless communications, could form various intermittent contacts due to the mobility of humans, and then could use the contact opportunity to communicate with each other. The dynamic changes of the network topology are closely related to the human mobility patterns. In this paper, we propose a social motivation-aware mobility model for MONs, which explains the basic laws of human mobility from the psychological point of view. We analyze and model social motivations of human mobility mainly in terms of expectancy value theory and affiliation motivation. Furthermore, we introduce a new concept of geographic functional cells, which not only incorporates the influence of geographical constraints on human mobility but also simplifies the complicated configuration of simulation areas. Lastly, we validate our model by simulating three real scenarios and comparing it with reality traces and other synthetic traces. The simulation results show that our model has a better match in the performance evaluation when applying social-based forwarding protocols like BUBBULE.