• Title/Summary/Keyword: aerosol optical properties

Search Result 114, Processing Time 0.016 seconds

Retrieval of Vertical Single-scattering albedo of Asian dust using Multi-wavelength Raman Lidar System (다파장 라만 라이다 시스템을 이용한 고도별 황사의 단산란 알베도 산출)

  • Noh, Youngmin;Lee, Chulkyu;Kim, Kwanchul;Shin, Sungkyun;Shin, Dongho;Choi, Sungchul
    • Korean Journal of Remote Sensing
    • /
    • v.29 no.4
    • /
    • pp.415-421
    • /
    • 2013
  • A new approach to retrieve the single-scattering albedo (SSA) of Asian dust plume, mixed with pollution particles, using multi-wavelength Raman lidar system was suggested in this study. Asian dust plume was separated as dust and non-dust particle (i.e. spherical particle) by the particle depolarization ratio at 532 nm. The vertical profiles of optical properties (the particle extinction coefficient at 355 and 532 nm and backscatter coefficient at 355, 532 and 1064 nm) for non-dust particle were used as input parameter for the inversion algorithm. The inversion algorithm provides the vertical distribution of microphysical properties of non-dust particle only so that the estimation of the SSA for the Asian dust in mixing state was suggested in this study. In order to estimate the SSA for the mixed Asian dust, we combined the SSA of non-dust particles retrieved by the inversion algorithms with assumed the SSA of 0.96 at 532 nm for dust. The retrieved SSA of Asian dust plume by lidar data was compared with the Aerosol Robotics Network (AERONET) retrieved values and showed good agreement.

Effects of Additives on the Characteristics of Sodium Borosilicate Thin Film Fabricated by AFD Method (첨가제가 AFD법에 의해 제조된 광소자용 Sodium Borosilicate 박막의 물성에 미치는 영향)

  • Chung, Hyung-Gon;Chun, Young-Yun;Mun, Jong-Ha;Chung, Suck-Jong;Lee, Hyung-Jong
    • Korean Journal of Materials Research
    • /
    • v.8 no.8
    • /
    • pp.693-698
    • /
    • 1998
  • The effects of $AI_{2}$$O_{3}$ and the ratio of $Na_2O/B_2O_3$ on the phase separation and optical properties of sodium borosilicate glass film fabricated by AFD(Aerosol Flame Deposition) were investigated. When AI,O, of 6wt% was added to $66SiO_2-27B_2O_3-7Na_2O$ the clear glass film without any crystallization was produced under air-quenching condition after consolidation. As the amount of $AI_{2}$$O_{3}$ increased from 1.5 to 6.0 wt% the refractive index linearly increased from 1.4610 to 1.4701, and the difference of TE and TM mode causing by residual stress in film increased gradually. However, the difference of TE and TM mode to reveal birefringence could be minimized by annealing below the glass transition temperature after consolidation and air quenching. On the other hand. as the ratio of $Na_2O/B_2O_3$ increased the refractive index and birefringence of glass film tended to increase, but the measurement of their values were not available at over the critical ratio of $Na_2O/B_2O_3$, because of the cloudiness due to crystallization. The phase separation was greatly accelerated with increasing the ratio of $Na_2O/B_2O_3$.

  • PDF

Study on the Variation of Optical Properties of Asian Dust Plumes according to their Transport Routes and Source Regions using Multi-wavelength Raman LIDAR System (다파장 라만 라이다 시스템을 이용한 발원지 및 이동 경로에 따른 황사의 광학적 특성 변화 연구)

  • Shin, Sung-Kyun;Noh, Youngmin;Lee, Kwonho;Shin, Dongho;Kim, KwanChul;Kim, Young J.
    • Korean Journal of Remote Sensing
    • /
    • v.30 no.2
    • /
    • pp.241-249
    • /
    • 2014
  • The continuous observations for atmospheric aerosol were carried out during 3 years (2009-2011) by using a multi-wavelength Raman lidar at the Gwangju Institute of Science and Technology (GIST), Korea ($35.11^{\circ}N$, $126.54^{\circ}E$). The particle depolarization ratios were retrieved from the observations in order to distinguish the Asian dust layer. The vertical information of Asian dust layers were used as input parameter for the Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) model for analysis of its backward trajectories. The source regions and transport pathways of the Asian dust layer were identified. The most frequent source region of Asian dust in Korea was Gobi desert during observation period in this study. The statistical analysis on the particle depolarization ratio of Asian dust was conducted according to their transport route in order to retrieve the variation of optical properties of Asian dust during long-range transport. The transport routes were classified into the Asian dust which was transported to observation site directly from the source regions, and the Asian dust which was passed over pollution regions of China. The particle depolarization ratios of Asian dust which were transported via industrial regions of China was ranged 0.07-0.1, whereas, the particle depolarization ratio of Asian dust which was transported directly from the source regions to observation site were comparably higher and ranged 0.11-0.15. It is considered that the pure Asian dust particle from source regions were mixed with pollution particles, which is likely to spherical particle, during transportation so that the values of particle depolarization of Asian dust mixed with pollution was decreased.

Intercomparison of Daegwallyeong Cloud Physics Observation System (CPOS) Products and the Visibility Calculation by the FSSP Size Distribution during 2006-2008 (대관령 구름물리관측시스템 산출물 평가 및 FSSP를 이용한 시정환산 시험연구)

  • Yang, Ha-Young;Jeong, Jin-Yim;Chang, Ki-Ho;Cha, Joo-Wan;Jung, Jae-Won;Kim, Yoo-Chul;Lee, Myoung-Joo;Bae, Jin-Young;Kang, Sun-Young;Kim, Kum-Lan;Choi, Young-Jean;Choi, Chee-Young
    • Korean Journal of Remote Sensing
    • /
    • v.26 no.2
    • /
    • pp.65-73
    • /
    • 2010
  • To observe and analyze the characteristics of cloud and precipitation properties, the Cloud physics Observation System (CPOS) has been operated from December 2003 at Daegwallyeong ($37.4^{\circ}N$, $128.4^{\circ}E$, 842 m) in the Taebaek Mountains. The major instruments of CPOS are follows: Forward Scattering Spectrometer Probe (FSSP), Optical Particle Counter (OPC), Visibility Sensor (VS), PARSIVEL disdrometer, Microwave Radiometer (MWR), and Micro Rain Radar (MRR). The former four instruments (FSSP, OPC, visibility sensor, and PARSIVEL) are for the observation and analysis of characteristics of the ground cloud (fog) and precipitation, and the others are for the vertical cloud characteristics (http://weamod.metri.re.kr) in real time. For verification of CPOS products, the comparison between the instrumental products has been conducted: the qualitative size distributions of FSSP and OPC during the hygroscopic seeding experiments, the precipitable water vapors of MWR and radiosonde, and the rainfall rates of the PARSIVEL(or MRR) and rain gauge. Most of comparisons show a good agreement with the correlation coefficient more than 0.7. These reliable CPOS products will be useful for the cloud-related studies such as the cloud-aerosol indirect effect or cloud seeding. The visibility value is derived from the droplet size distribution of FSSP. The derived FSSP visibility shows the constant overestimation by 1.7 to 1.9 times compared with the values of two visibility sensors (SVS (Sentry Visibility Sensor) and PWD22 (Present Weather Detect 22)). We believe this bias is come from the limitation of the droplet size range ($2{\sim}47\;{\mu}m$) measured by FSSP. Further studies are needed after introducing new instruments with other ranges.