• Title/Summary/Keyword: aeroelastic problem

Search Result 20, Processing Time 0.024 seconds

Robust Adaptive Output Feedback Control Design for a Multi-Input Multi-Output Aeroelastic System

  • Wang, Z.;Behal, A.;Marzocca, P.
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.12 no.2
    • /
    • pp.179-189
    • /
    • 2011
  • In this paper, robust adaptive control design problem is addressed for a class of parametrically uncertain aeroelastic systems. A full-state robust adaptive controller was designed to suppress aeroelastic vibrations of a nonlinear wing section. The design used leading and trailing edge control actuations. The full state feedback (FSFB) control yielded a global uniformly ultimately bounded result for two-axis vibration suppression. The pitching and plunging displacements were measurable; however, the pitching and plunging rates were not measurable. Thus, a high gain observer was used to modify the FSFB control design to become an output feedback (OFB) design while the stability analysis for the OFB control law was presented. Simulation results demonstrate the efficacy of the multi-input multi-output control toward suppressing aeroelastic vibrations and limit cycle oscillations occurring in pre- and post-flutter velocity regimes.

Dynamic modeling and structural reliability of an aeroelastic launch vehicle

  • Pourtakdoust, Seid H.;Khodabaksh, A.H.
    • Advances in aircraft and spacecraft science
    • /
    • v.9 no.3
    • /
    • pp.263-278
    • /
    • 2022
  • The time-varying structural reliability of an aeroelastic launch vehicle subjected to stochastic parameters is investigated. The launch vehicle structure is under the combined action of several stochastic loads that include aerodynamics, thrust as well as internal combustion pressure. The launch vehicle's main body structural flexibility is modeled via the normal mode shapes of a free-free Euler beam, where the aerodynamic loadings on the vehicle are due to force on each incremental section of the vehicle. The rigid and elastic coupled nonlinear equations of motion are derived following the Lagrangian approach that results in a complete aeroelastic simulation for the prediction of the instantaneous launch vehicle rigid-body motion as well as the body elastic deformations. Reliability analysis has been performed based on two distinct limit state functions, defined as the maximum launch vehicle tip elastic deformation and also the maximum allowable stress occurring along the launch vehicle total length. In this fashion, the time-dependent reliability problem can be converted into an equivalent time-invariant reliability problem. Subsequently, the first-order reliability method, as well as the Monte Carlo simulation schemes, are employed to determine and verify the aeroelastic launch vehicle dynamic failure probability for a given flight time.

Equivalent Structural Modeling of Wind Turbine Rotor Blade (풍력발전기 로터 블레이드의 등가 구조모델 수립)

  • Park, Young-Geun;Hwang, Jai-Hyuk;Kim, Seok-Woo;Jang, Moon-Seok;Bae, Jae-Sung
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.14 no.4
    • /
    • pp.11-16
    • /
    • 2006
  • The wind turbine rotor blade is faced with various aeroelastic problem as rotor blades become bigger and lighter by the use the composite material. The aeroelastic analysis of a wind turbine rotor blade requires its aerodynamic model and structural model. For effective aeroelastic analysis, it is required the simple and effective structural model of the blade. In the present study, we introduce the effective equivalent structural modeling of the blade for aeroelastic analysis. The equivalent beam model of the composite blade based on its 3D finite element model is established. The free vibration analysis shows that the equivalent beam model of the blade is equivalent to its 3D finite element model.

  • PDF

Efficiency of Dynamic Mesh in Static Aeroelastic Analysis and Design Optimization Problem (정적 공탄성 해석과 최적화 문제에서의 동적 격자의 효용성)

  • Kim, Byung-Kon;Jun, Sang-Ook;Jeon, Yong-Hee;Kim, Jeong-Hwa;Lee, Dong-Ho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.2
    • /
    • pp.87-93
    • /
    • 2007
  • Generally, the analysis using Computational Fluid Dynamics(CFD) is necessary for aircraft design. However, the analysis using CFD, it requires a lot of computational time and cost. But we can reduce grid reconstruction time of analyzing the various models if we use dynamic mesh. In addition, dynamic mesh can be an efficient technique in aeroelastic analysis and design optimization problem because these problems need grid reconstruction process frequently.

Numerical flow computation around aeroelastic 3D square cylinder using inflow turbulence

  • Kataoka, Hiroto;Mizuno, Minoru
    • Wind and Structures
    • /
    • v.5 no.2_3_4
    • /
    • pp.379-392
    • /
    • 2002
  • Numerical flow computations around an aeroelastic 3D square cylinder immersed in the turbulent boundary layer are shown. Present computational code can be characterized by three numerical aspects which are 1) the method of artificial compressibility is adopted for the incompressible flow computations, 2) the domain decomposition technique is used to get better grid point distributions, and 3) to achieve the conservation law both in time and space when the flow is computed a with moving and transformed grid, the time derivatives of metrics are evaluated using the time-and-space volume. To provide time-dependant inflow boundary conditions satisfying prescribed time-averaged velocity profiles, a convenient way for generating inflow turbulence is proposed. The square cylinder is modeled as a 4-lumped-mass system and it vibrates with two-degree of freedom of heaving motion. Those blocks which surround the cylinder are deformed according to the cylinder's motion. Vigorous oscillations occur as the vortex shedding frequency approaches cylinder's natural frequencies.

Prevention of suspension bridge flutter using multiple tuned mass dampers

  • Ubertini, Filippo
    • Wind and Structures
    • /
    • v.13 no.3
    • /
    • pp.235-256
    • /
    • 2010
  • The aeroelastic stability of bridge decks equipped with multiple tuned mass dampers is studied. The problem is attacked in the time domain, by representing self-excited loads with the aid of aerodynamic indicial functions approximated by truncated series of exponential filters. This approach allows to reduce the aeroelastic stability analysis in the form of a direct eigenvalue problem, by introducing an additional state variable for each exponential term adopted in the approximation of indicial functions. A general probabilistic framework for the optimal robust design of multiple tuned mass dampers is proposed, in which all possible sources of uncertainties can be accounted for. For the purposes of this study, the method is also simplified in a form which requires a lower computational effort and it is then applied to a general case study in order to analyze the control effectiveness of regular and irregular multiple tuned mass dampers. A special care is devoted to mistuning effects caused by random variations of the target frequency. Regular multiple tuned mass dampers are seen to improve both control effectiveness and robustness with respect to single tuned mass dampers. However, those devices exhibit an asymmetric behavior with respect to frequency mistuning, which may weaken their feasibility for technical applications. In order to overcome this drawback, an irregular multiple tuned mass damper is conceived which is based on unequal mass distribution. The optimal design of this device is finally pursued via a full domain search, which evidences a remarkable robustness against frequency mistuning, in the sense of the simplified design approach.

Monitoring of wind turbine blades for flutter instability

  • Chen, Bei;Hua, Xu G.;Zhang, Zi L.;Basu, Biswajit;Nielsen, Soren R.K.
    • Structural Monitoring and Maintenance
    • /
    • v.4 no.2
    • /
    • pp.115-131
    • /
    • 2017
  • Classical flutter of wind turbine blades indicates a type of aeroelastic instability with fully attached boundary layer where a torsional blade mode couples to a flapwise bending mode, resulting in a mutual rapid growth of the amplitudes. In this paper the monitoring problem of onset of flutter is investigated from a detection point of view. The criterion is stated in terms of the exceeding of a defined envelope process of a specific maximum torsional vibration threshold. At a certain instant of time, a limited part of the previously measured torsional vibration signal at the tip of blade is decomposed through the Empirical Mode Decomposition (EMD) method, and the 1st Intrinsic Mode Function (IMF) is assumed to represent the response in the flutter mode. Next, an envelope time series of the indicated modal response is obtained in terms of a Hilbert transform. Finally, a flutter onset criterion is proposed, based on the indicated envelope process. The proposed online flutter monitoring method provided a practical and direct way to detect onset of flutter during operation. The algorithm has been illustrated by a 907-DOFs aeroelastic model for wind turbines, where the tower and the drive train is modelled by 7 DOFs, and each blade by means of 50 3-D Bernoulli-Euler beam elements.

Multi-Objective Optimization of Flexible Wing using Multidisciplinary Design Optimization System of Aero-Non Linear Structure Interaction based on Support Vector Regression (Support Vector Regression 기반 공력-비선형 구조해석 연계시스템을 이용한 유연날개 다목적 최적화)

  • Choi, Won;Park, Chan-Woo;Jung, Sung-Ki;Park, Hyun-Bum
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.7
    • /
    • pp.601-608
    • /
    • 2015
  • The static aeroelastic analysis and optimization of flexible wings are conducted for steady state conditions while both aerodynamic and structural parameters can be used as optimization variables. The system of multidisciplinary design optimization as a robust methodology to couple commercial codes for a static aeroelastic optimization purpose to yield a convenient adaptation to engineering applications is developed. Aspect ratio, taper ratio, sweepback angle are chosen as optimization variables and the skin thickness of the wing. The real-coded adaptive range multi-objective genetic algorithm code, which represents the global multi-objective optimization algorithm, was used to control the optimization process. The support vector regression(SVR) is applied for optimization, in order to reduce the time of computation. For this multi-objective design optimization problem, numerical results show that several useful Pareto optimal designs exist for the flexible wing.

Static Aeroelastic Optimization of a Composite Wing Using Genetic Algorithm (유전자 알고리즘을 이용한 복합재료 날개의 정적 공탄성 최적화)

  • Kim, Dong-Hyun;Lee, In
    • Composites Research
    • /
    • v.13 no.2
    • /
    • pp.61-71
    • /
    • 2000
  • Today, the use of composite materials become an essential part in the design and manufacturing process of the flight vehicles to reduce the structural weight. Since the structural properties can be varied largely due to the stacking sequence of ply angles, it is very important problem to determine the optimized ply angles under a design objective. Thus, in this study, the analysis of static aeroelastic optimization of a composite wing has been performed. An analytical system to calculate and optimize tile aero-structural equilibrium position has been developed and incorporated with the genetic algorithm. The effects of stacking sequence on the structural deformation and aerodynamic distribution have been studied and calculated with the condition of minimum structural deformation for a swept-back composite wing. For the set of practical stacking angles, the design results to maximize the performance of static aeroelasticity are also presented.

  • PDF

Performance Evaluation of Stator-Rotor Cascade System Considering Flow Viscosity and Aeroelastic Deformation Effects (유동점성 및 공탄성 변형효과를 고려한 스테이터-로터 케스케이드 시스템의 성능평가)

  • Kim, Dong-Hyun;Kim, Yu-Sung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.1
    • /
    • pp.72-78
    • /
    • 2008
  • In this study, advanced (fluid-structure interaction (FSI)) analysis system has been developed in order to predict turbine cascade performance with blade deformation effect due to aerodynamic loads. Intereference effects due to the relative movement of the rotor cascade with respect to the stator cascade are also considered. Reynolds-averaged Navier-Stokes equations with one equation Spalart-Allmaras and two-equation k-ω SST turbulence models are solved to accurately predict fluid dynamic loads considering flow separation effects. A fully implicit time marching scheme based on the (coupled Newmark time-integration method) with high artificial damping is efficiently used to compute the complex fluid-structure interaction problem. Predicted aerodynamic performance considering structural deformation effect of the blade shows somewhat different results compared to the case of rigid blade model. Cascade performance evaluations for different elastic axis positions are importantly presented and its aeroelastic effects are investigated.