• 제목/요약/키워드: aerodynamic shape optimization

검색결과 107건 처리시간 0.023초

대기권을 비행하는 유도 미사일의 최대 사거리 구현을 위한 외형 형상 최적화 시스템 연구 (An External Shape Optimization Study to Maximize the Range of a Guided Missile in Atmospheric Flight)

  • 양영록;허상범;제소영;박찬우;명노신;조태환;황의창;제상언
    • 한국항공우주학회지
    • /
    • 제37권6호
    • /
    • pp.519-526
    • /
    • 2009
  • 본 논문에서는 커나드와 테일핀을 가진 지대지 유도미사일이 대기권을 비행할 때 최대 사거리를 갖기 위한 효율적인 외형 형상 최적화 기법 연구에 대하여 기술하였다. 이를 위하여 비행궤적 해석 기법과 최적화 기법을 연계하여 미사일의 사거리 증대를 위한 외형 형상 최적화 전산 프로그램 시스템을 구축하였다. 비행궤적 해석부분에서는 반실험적 기법을 이용한 공력해석프로그램인 Missile DATCOM을 직접 연결하여 운동방정식 계산에 필요한 공력계수들을 계산 시간 단계 마다 효율적으로 제공할 수 있게 하였고 최고점 이후의 활공비행 구간에서는 최대 양항비를 갖는 Trim 조건 계산 모듈을 첨가하여 활공비행전 영역에서 최대 양항비 상태에서 지속적으로 비행한다는 가정으로 계산 하였다. 최적화 기법으로는 Response Surface Method(RSM)를 적용하여 계산 시간 효율화를 꾀하였다.

Development of an Engineering Education Framework for Aerodynamic Shape Optimization

  • Kwon, Hyung-Il;Kim, Saji;Lee, Hakjin;Ryu, Minseok;Kim, Taehee;Choi, Seongim
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제14권4호
    • /
    • pp.297-309
    • /
    • 2013
  • Design optimization is a mathematical process to find an optimal solution through the use of formal optimization algorithms. Design plays a vital role in the engineering field; therefore, using design tools in education and research is becoming more and more important. Recently, numerical design optimization in fluid mechanics, which uses computational fluid dynamics (CFD), has numerous applications in the engineering field, because of the rapid development of high-performance computing resources. However, it is difficult to find design optimization software and contents for educational purposes in aerospace engineering. In the present study, we have developed an aerodynamic design framework specifically for an airfoil, based on the EDucation-research Integration through Simulation On the Net (EDISON) portal. The airfoil design framework is composed of three subparts: a geometry kernel, CFD flow analysis, and an optimization algorithm. Through a seamless interface among the subparts, an iterative design process is conducted. In addition, the CFD flow analysis and the design framework are provided through a web-based portal system, while the computation is taken care of by a supercomputing facility. In addition to the software development, educational contents are developed for lectures associated with design optimization in aerospace and mechanical engineering education programs. The software and content developed in this study is expected to be used as a tool for e-learning material, for education and research in universities.

단순형태 세일의 변형에 대한 유체-구조 연성 해석 (Fluid-Structure Interaction Analysis on the Deformation of Simplified Yacht Sails)

  • 박세라;유재훈;송창용
    • 대한조선학회논문집
    • /
    • 제50권1호
    • /
    • pp.33-40
    • /
    • 2013
  • Since most of yacht sails are made of thin fabric, they form cambered sail shape that can efficiently generate lift power by aerodynamic interaction and by external force delivered from supporting structures such as mast and boom. When the incident flow and external force alter in terms of volume or condition, the shape of sail also change. This deformation in shape has impact on the peripheral flow and aerodynamic interaction of the sail, and thus it is related to the deformation of the sail in shape again. Therefore, the precise optimization of aerodynamic performance of sail requires fluid-structure interaction (FSI) analysis. In this study, the simplified sail without camber was under experiment for one-way FSI that uses the result of flow analysis to the structural analysis as load condition in an attempt to fluid-structure interaction phenomenon. To confirm the validity of the analytical methods and the reliability of numerical computation, the difference in deformation by the number of finite element was compared. This study reproduced the boundary conditions that sail could have by rigs such as mast and boom and looked into the deformation of sail. Sail has non-linear deformation such as wrinkles because it is made of a thin fabric material. Thus non-linear structural analysis was conducted and the results were compared with those of analysis on elastic material.

제트송풍기의 공력설계 최적화에 관한 연구 (Study on Optimization of Aerodynamic Design of A Jet Fan)

  • 서성진;김광용;장동욱
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2002년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.439-443
    • /
    • 2002
  • In this study, three-dimensional incompressible viscous flow analysis and optimization using response surface method are presented for the design of a jet fan. Steady, incompressible, three-dimensional Reynolds averaged Wavier-Stokes equations are used as governing equations, and standard k-$\epsilon$ turbulence model is chosen as a turbulence model. Governing equations are discretized using finite volume method. Sweep angles and maximum thickness of blade are used as design variables for the shape optimization of the impeller in response surface method. The experimental points which are needed to construct response surface are obtained from the D-optimal design and Full Factorial design and relations between design variables and response surface are examined.

  • PDF

원심 압축기 임펠러의 최적 구조 설계 (Optimum Structural Design for Centrifugal Compressor Impeller)

  • 최유진;송준영;김승조;강신형
    • 한국유체기계학회 논문집
    • /
    • 제2권4호
    • /
    • pp.31-39
    • /
    • 1999
  • Using basic shape and aerodynamic data for the designed impeller, basic structure analysis such as stress analysis and eigenvalue analysis was carried out. Also, we made the optimization program that was designed for optimum thickness within the adaptive stress limits. For the structural optimum theory, we used the BFGS(Broydon Fletcher Goldfarb Shanno) Method which is one of the searching methods. Through this program we managed optimization of the blade. For numerical simulation, we used the optimization program to compose Cyclic Module of NASTRAN and the Optimization Program which was implemented by C and fortran language.

  • PDF

신뢰성을 고려한 유연 날개의 다점 최적 설계에 관한 연구 (A STUDY ABOUT MULTI-POINT RELIABILITY BASED DESIGN OPTIMIZATION OF FLEXIBLE WING)

  • 김수환;이재훈;권장혁
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2005년도 추계 학술대회논문집
    • /
    • pp.99-104
    • /
    • 2005
  • For the efficient reliability analysis, Bi-direction two-point approximation(BTPA) method is developed which solves shortcomings of conventional two-point approximation(TPA) methods that generate an approximate surface with low accuracy or sometimes do an unstable approximate surface. The conventional reliability based design optimization(RBDO) methods require high computational cost compared with the deterministic design optimization(DO) methods. To overcome the computational inefficiency of RBDO, the approximate reliability analysis approaches on the TPA surface are proposed. Using these FORM and SORM analysis strategies, multi-point aerodynamic-structure interacted shape design optimizations with uncertainty are performed very efficiently.

  • PDF

재생형 송풍기의 고효율 저소음 설계를 위한 통합형 최적설계 프로그램 개발 (Development of An Integrated Optimal Design Program for Design of A High-Efficiency Low-Noise Regenerative Fan)

  • 허만웅;김진혁;서태완;구경완;이충석;김광용
    • 한국유체기계학회 논문집
    • /
    • 제17권1호
    • /
    • pp.35-40
    • /
    • 2014
  • A multi-objective optimization of a regenerative fan for enhancing the aerodynamic and aeroacoustic performance was carried out using an integrated fan design system, namely, Total FAN-Regen$^{(R)}$. The Total FAN-Regen$^{(R)}$ was developed for non-specialists to carry out a series of design process, viz., computational preliminary design, three-dimensional aerodynamic and aeroacoustic analyses, and design optimization, for a regenerative fan. An aerodynamic analysis of the regenerative fan was conducted by solving three-dimensional Reynolds-averaged Navier-Stokes equations using the shear stress transport turbulence model. And, an aeroacoustic analysis of the regenerative fan was implemented in a finite/infinite element method by solving the variational formulation of Lighthill's analogy based on the results of the unsteady flow analysis. An optimum shape obtained by Total FAN-Regen$^{(R)}$ shows the enhanced efficiency and decreased sound pressure level as much as 1.5 % and 20.0 dB, respectively, compared to those of the reference design. The performance test was carried out for an optimized regenerative fan to validate the performance of the numerically predicted optimal design.

최적화기법을 이용한 축류형 송풍기개발에 관한 연구 (A Study of Development of an Axial-Type Fan with an Optimization Method)

  • 조봉수;조종현;정양범;조수용
    • 한국유체기계학회 논문집
    • /
    • 제10권6호
    • /
    • pp.7-16
    • /
    • 2007
  • An axial-type fan which operates at the relative total pressure of 671Pa and static pressure of 560Pa with the flow rate of $416.6m^3/min$ is developed with an optimization technique based on the gradient method. Prior to the optimization of fan blade, a three-dimensional axial-type fan blade is designed based on the free-vortex method along the radial direction. Twelve design variables are applied to the optimization of the rotor blade, and one design variable is selected for optimizing a stator which is located behind of the rotor and is used to support a fan driving motor. The total and static pressure are applied to the restriction condition with the operating flowrate on the design point, and the efficiency is chosen as the response variable to be maximized. Through these procedures, an initial axial-fan blade designed by the free vortex method is modified to increase the efficiency with the satisfaction of the operating condition. The optimized fan is tested to compare the aerodynamic performance with an imported same class fan. The test result shows that the optimized fan operates with the satisfaction of restriction conditions, but the imported fan cannot. From the experimental and numerical test, they show that this optimization method improves the fan efficiency and operating pressures of a fan designed by the classical fan design method.

의류 건조기 성능 향상과 공력소음 저감을 위한 원심팬의 날개 형상 최적화 (Blade shape optimization of centrifugal fan for improving performance and reducing aerodynamic noise of clothes dryer)

  • 최진호;유서윤;정철웅;김민규;이광호
    • 한국음향학회지
    • /
    • 제38권3호
    • /
    • pp.321-327
    • /
    • 2019
  • 본 연구의 목표는 의류 건조기용 원심팬과 덕트 및 하우징 등을 포함한 공기배출 시스템의 유량 성능 향상 및 공력소음을 저감하기 위한 것이다. 전산유체역학과 FW-H(Ffowcs-Williams and Hawkings) 방정식에 기초한 음향상사법을 이용하여 유동 및 소음 특성을 고찰하였다. 유량과 소음성능 최적화 설계를 위해 반응표면기법을 활용하였다. 설계 인자로 원심팬의 날개 입구각, 출구각을 고려한 2인자 중심합성계획법을 채택하였다. 도출된 최적설계안은 덕트와 하우징에서 감소된 난류에너지 분포를 나타냈으며 결과적으로 유량의 증가와 공력소음이 감소됨을 확인하였다. 최종적으로 최적설계안을 기초로 제작한 시제품에 대한 실험을 통하여 4.2 % 유량이 증가함을 확인하였다.

A Study on an Axial-Type 2-D Turbine Blade Shape for Reducing the Blade Profile Loss

  • Cho, Soo-Yong;Yoon, Eui-Soo;Park, Bum-Seog
    • Journal of Mechanical Science and Technology
    • /
    • 제16권8호
    • /
    • pp.1154-1164
    • /
    • 2002
  • Losses on the turbine consist of the mechanical loss, tip clearance loss, secondary flow loss and blade profile loss etc.,. More than 60 % of total losses on the turbine is generated by the two latter loss mechanisms. These losses are directly related with the reduction of turbine efficiency. In order to provide a new design methodology for reducing losses and increasing turbine efficiency, a two-dimensional axial-type turbine blade shape is modified by the optimization process with two-dimensional compressible flow analysis codes, which are validated by the experimental results on the VKI turbine blade. A turbine blade profile is selected at the mean radius of turbine rotor using on a heavy duty gas turbine, and optimized at the operating condition. Shape parameters, which are employed to change the blade shape, are applied as design variables in the optimization process. Aerodynamic, mechanical and geometric constraints are imposed to ensure that the optimized profile meets all engineering restrict conditions. The objective function is the pitchwise area averaged total pressure at the 30% axial chord downstream from the trailing edge. 13 design variables are chosen for blade shape modification. A 10.8 % reduction of total pressure loss on the turbine rotor is achieved by this process, which is same as a more than 1% total-to-total efficiency increase. The computed results are compared with those using 11 design variables, and show that optimized results depend heavily on the accuracy of blade design.