• Title/Summary/Keyword: aerodynamic coefficient

Search Result 388, Processing Time 0.022 seconds

Effect of the Gurney Flap on NACA 0015 Airfoil (NACA 0015 익형에 대한 Gurney 플랩의 영향)

  • Yoo, Neung-Soo;Lee, Jang-Ho
    • Journal of Industrial Technology
    • /
    • v.20 no.B
    • /
    • pp.71-76
    • /
    • 2000
  • A numerical investigation was performed to determine the effect of the Gurney flap on NACA 0015 airfoil. A Navier-Stokes code. FLUENT, was used to calculate the flow field about the airfoil. The fully-turbulent results were obtained using the standard ${\kappa}-{\varepsilon}$ two-equation turbulence model. The numerical solutions showed the Gurney flap increased both lift and drag. These results suggested that the Gurney flap served to increase the effective camber of the airfoil. Gurney flap provided a significant increase in lift-to-drag ratio relatively at low angle of attack and for high lift coefficient. It turned out that 0.75% chord size of flap was best. The numerical results exhibited detailed flow structures at the trailing edge and provided a possible explanation for the increased aerodynamic performance.

  • PDF

Numerical Study of Passive Control with Slotted Blading in Highly Loaded Compressor Cascade at Low Mach Number

  • Ramzi, Mdouki;Bois, Gerard;Abderrahmane, Gahmousse
    • International Journal of Fluid Machinery and Systems
    • /
    • v.4 no.1
    • /
    • pp.97-103
    • /
    • 2011
  • With the aim to increase blade loadings and stable operating range in highly loaded compressors, this article has been conducted to explore, through a numerical parametric study, the potential of passive control using slotted bladings in cascade configurations. The objective of this numerical investigation is to analyze the influence of location, width and slope of the slots and therefore identify the optimal configuration. The approach is based on two dimensional cascade geometry, low speed regime, steady state and turbulent RANS model. The results show the efficiency of this passive technique to delay separation and enhance aerodynamic performances of the compressor cascade. A maximum of 28.3% reduction in loss coefficient have been reached, the flow turning is increased with approximately $5^0$ and high loading over a wide range of angle of attack have been obtained for the optimized control parameter.

Aerodynamic Performance of Gurney Flap (Gurney 플?의 공기역학적 성능)

  • Yoo, Neung-Soo;Jung, Sung-Woong
    • Journal of Industrial Technology
    • /
    • v.18
    • /
    • pp.335-341
    • /
    • 1998
  • A numerical investigation was performed to determine the effect of a Gurney flap on a NACA 23012 airfoil. A Navier-Stokes code, RAMPANT, was used to calculate the flow field about airfoil. The fully turbulent results were obtained using the standard $k-{\varepsilon}$ two-equation turbulence model. To provide a check case for our computational method, computations were performed for NACA 4412 airfoil which compared with Wedcock's experimental data. Gurney flap sizes of 0.5, 1.0, 1.5, and 2% of the airfoil chord were studied. The numerical solutions showed the Gurney flap increased both lift and drag. These results suggested that the Gurney flap served to increased the effective camber of the airfoil. But Gurney flap provided a significant increase in lift-to-drag ratio relatively at low angle of attack and for high lift coefficient. Also, it turned out that 0.5% chord size of flap was best one among them.

  • PDF

On wind stability requirements for emergency car warning triangles

  • Scarabino, A.;Delnero, J.S.;Camocardi, M.
    • Wind and Structures
    • /
    • v.15 no.4
    • /
    • pp.345-354
    • /
    • 2012
  • This work discusses the wind stability requirements specified by UN Reg. 27 on emergency car warning triangles, which are of mandatory use in many countries. Wind tunnel experiments have been carried out in order to determine aerodynamic coefficients of commercial warning triangles and the friction coefficients between the triangle legs and an asphalt base that fulfils the roughness requirements stated by Reg. 27 for wind stability certification. The wind stability specifications for warning triangles are reviewed, compared with pressure field measurements and discussed. Results of wind tunnel tests and comparison with field measurements reported in the literature show that the requirements could be excessively conservative.

Performance Study of Thrust Control Unit with the Various Geometric Shapes

  • Kim, Kyoung-Ryun;Park, Jong-Ho
    • International Journal of Fluid Machinery and Systems
    • /
    • v.9 no.4
    • /
    • pp.354-361
    • /
    • 2016
  • This study aims to identify aerodynamic characteristics of the ramp tab, a mechanical deflector, by conducting a non-combustive experiment using compressed air and supersonic flow test equipment. With the ramp tabs installed symmetrically and asymmetrically on the outlet of the supersonic nozzle, the structure of the flow field, the thrust spoilage, the thrust deviation angle, and the lift/drag coefficients were derived and analyzed. The results show that the asymmetrically-installed ramp tabs are advantageous relative to the symmetrically-installed tabs in terms of the performance of thrust vector control, thrust deviation angle, and lift coefficient.

Design of a Speed Controller for the Separately Excited DC Motor in Application on Pure Electric Vehicles (순전기자동차용 타여자직류기의 속도제어기 설계)

  • Hyun, Keun-Ho
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.56 no.1
    • /
    • pp.6-12
    • /
    • 2007
  • In this paper, an robust adaptive backstepping controller is proposed for the speed control of separately excited DC motor in pure electric vehicles. A general electric drive train of PEV is conceptually rearrange to major subsystems as electric propulsion, energy source, and auxiliary subsystem and the load torque is modeled by considering the aerodynamic, rolling resistance and grading resistance. Armature and field resistance, damping coefficient and load torque are considered as uncertainties and noise generated at applying load torque to motor is also considered. It shows that the backstepping algorithm can be used to solve the problems of nonlinear system very well and robust controller can be designed without the variation of adaptive law. Simulation results are provided to demonstrate the effectiveness of the proposed controller.

Wind loads on a solar array

  • Kopp, G.A.;Surry, D.;Chen, K.
    • Wind and Structures
    • /
    • v.5 no.5
    • /
    • pp.393-406
    • /
    • 2002
  • Aerodynamic pressures and forces were measured on a model of a solar panel containing six slender, parallel modules. Of particular importance to system design is the aerodynamically induced torque. The peak system torque was generally observed to occur at approach wind angles near the diagonals of the panel ($45^{\circ}$, $135^{\circ}$, $225^{\circ}$ and $315^{\circ}$) although large loads also occurred at $270^{\circ}$, where wind is in the plane of the panel, perpendicular to the individual modules. In this case, there was strong vortex shedding from the in-line modules, due to the observation that the module spacing was near the critical value for wake buffeting. The largest loads, however, occurred at a wind angle where there was limited vortex shedding ($330^{\circ}$). In this case, the bulk of the fluctuating torque came from turbulent velocity fluctuations, which acted in a quasi-steady sense, in the oncoming flow. A simple, quasi-steady, model for determining the peak system torque coefficient was developed.

Drag Coefficient Variations of an Oscillating NACA 0012 Airfoil (진동하는 NACA 0012 에어포일에서의 항력계수 변화)

  • Kim, Dong-Ha;Chang, Jo-Won;Kim, Hak-Bong;Jeon, Chang-Soo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.2
    • /
    • pp.137-145
    • /
    • 2008
  • An experimental study was performed in order to investigate the influence of Reynolds number on the drag coefficient variations of an oscillating airfoil. A NACA 0012 airfoil was sinusoidally pitched at the quarter chord point with an oscillating amplitude of ${\pm}6^{\circ}$. The free-stream velocities were 1.98, 2.83 and 4.03 m/s and the corresponding chord Reynolds numbers were $2.3{\times}10^4$, $3.3{\times}10^4$ and $4.8{\times}10^4$, respectively. The drag coefficient was calculated from the ensemble average velocity measured by an X-type hot-wire probe(X-type, 55R51) in the near-wakes region. In the case of Re=$2.3{\times}10^4$, variation of drag coefficient shows a negative damping (counter-clockwise variation), which implies an unstable state which could be excited by aerodynamic force, whereas the drag coefficient represents the positive damping (clockwise variation) as the Reynolds number increases from Re=$3.3{\times}10^4$ to $4.8{\times}10^4$. Hence, the drag coefficient variations show significant differences between Re=$2.3{\times}10^4$ and $4.8{\times}10^4$이다.

Flow Around an Elliptic Cylinder Placed Near a Plane Boundary (평판 가까이에 놓인 타원형 실린더 주위 유동에 관한 연구)

  • Kim, Seong-Min;Lee, Sang-Jun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.8
    • /
    • pp.2637-2649
    • /
    • 1996
  • Flow characteristics and aerodynamic forces acting on an elliptic cylinder placed in a plane boundary layer were investigated experimentally. Four cylinder models with axis ratio(major axis to minor axis, AR=A/B) of 1, 2, 3, and 4 having the same equivalent diameter were used in this experiment. The Reynolds number based on the equivalent diameter $D_e$(=20mm) was 13,000. In the case of circular cylinder, regular vortex shedding occurs for the cylinder gaps larger than G/B=0.3 and is not almost related to the boundary layer thickness. But, for the elliptic cylinders, the vortex shedding frequency is increased with increasing the gap ratio (G/B) and the axis ratio (AR) of elliptic cylinders. The maximum drag coefficient acting on a circular cylinder is mainly affected by the boundary layer thickness. But, the elliptic cylinders(AR$\geq$2), except for the smaller gap G/B<0.2, show a nearly constant drag coefficient which is much smaller than that of a circular cylinder. The base pressure on the flat plate decreases with increasing the axis ratio(AR) of the elliptic cylinder. In the case of a circular cylinder, the base pressure has the minimum value at the gap ratio G/B=0.4, but it occurs at G/D=2 for elliptic cylinders. The mean velocity of the cylinder wake is quickly recovered at a small cylinder height ratio(H/$\delta$), but the turbulent intensity is rapidly recovered at a large cylinder height ratio(H/$\delta$). The effective wake region in the plane boundary layer is shrinkaged with increasing the axis ratio(AR) of elliptic cylinder. And the drag coefficient and streamwise turbulent intensity of the elliptic cylinder with AR=4 are less than half of those for the circular cylinder(AR=1).

Dynamic analysis of wind turbine wake (풍력 발전 터빈 후류의 동적 분석)

  • Um, Young Han;Kim, Yun Gu;Park, Sung Goon
    • Journal of the Korean Society of Visualization
    • /
    • v.18 no.2
    • /
    • pp.59-65
    • /
    • 2020
  • Vertical axis wind energy systems including 3 and 4 blades are numerically investigated in a two-dimensional (2D) computational domain. The power coefficient (Cp) is adopted to measure the efficiency of the system and the effect of the rotating velocity on the power coefficient is analyzed for the two different systems. The rotating velocity varies from 30 rad/s to 90 rad/s, which corresponds to the tip speed ratio (T.S.R) of 0.5 to 1.5. The torque exerted on the blades is mainly determined by the aerodynamic force in the x-direction and maximized when the blade is positioned at around θ = 186°. The efficiency of the 4-blade system is higher than that of the 3-blade system within the tip speed ratio range between 0.5 and 0.67, besides where the 3-blade system shows a better performance. For the 3-blade system, the maximum efficiency is reached to 0.082 at the tip speed ratio of 1.083. The maximum efficiency of the 4-blade system is 0.071 at T.S.R. = 0.92. The velocity fields in the x-direction, pressure fields, and the vorticity magnitude are analyzed in detail for the optimal cases of the 3- and 4-blades systems, respectively.