• Title/Summary/Keyword: adventitious root formation

Search Result 92, Processing Time 0.022 seconds

Adventitious Root Formation from Cotyledon in Soybean (Glycine max L.) Cultivars (품종별 대두 〔Glycine max L.〕 자엽에서의 부정근 형성)

  • Ha, Keon-Soo;Han, Tae-Jin
    • Journal of Plant Biotechnology
    • /
    • v.29 no.1
    • /
    • pp.31-36
    • /
    • 2002
  • The patterns of adventitious root formation from cotyledons for each cultivar of soybeans were compared. The results of adventitious root formation in cultivars are classified as two groups; the first group showed the direct adventitious root formation, and the second group resulted in the callus and adventitious root formation. The cultivars that have much callus formation had less the adventitious root formation. The adventitious root formation in the cotyledonary explants was occured only at the inoculation of adaxial side. When adaxial and abaxial side was inoculated simultaneously, the adventitious roots were formed at the adaxial side. Thus, it suggests that there must be direction to some extent. Starch in the cotyledonary explants were more abundant at the 4 days after induction than at the early stage of the adventitious root formation, but the starch was not observed after 7 days, that the growth stage of adventitious roots.

Micropropagation and Mass Production of Adventitious Roots of Polygonatum odoratum via the Culture of Seedling Explnnts

  • Yoon, Eui-Soo;Park, Yong-Eui
    • Journal of Plant Biotechnology
    • /
    • v.4 no.1
    • /
    • pp.33-37
    • /
    • 2002
  • Micropropagation and adventitious root production via the culture of Polygonatum odoratum were performed. Stem segments of seedlings of Polygonatum odoratum were the most efficient explants for adventitious shoot formation compared to leaf and root segments. Exogenous cytokinin treatment was required for adventitious shoot formation. Among the cytokinin (BA, Kinetin and Zeatin) tested, BA was most effective for shoot formation from stem segments. Auxin (NAA or IBA) in combination with cytokinin significantly enhanced adventitious shoot formation. Twenty five percent of explants produced adventitious shoots on medium with 2.0 mg/L BAP alone, while 83% of explants produced adventitious shoots on medium with the combination of 2.0 mg/L BAP and 0.1 mg/L IBA. Rooting of adventitious shoots was achieved after transferring to 112 MS medium supplemented with 0.1 mg/L IBA and 0.5 mg/L zeatin. When stem segments were cultured on MS medium with various kinds of auxin (IBA, NAA and 2,4-D), adventitious roots were formed from callus. frequency of adventitious root formation was highest in 2,4-D than NAA and IBA. When roots were in clusters together with parental stem segments, growth of roots actively occurred in hormone-free MS liquid medium. The above results represent that possible application for the mass production of roots and plantlets through in vitro culture system of Polygonatum odoratum.

Effect of Endogenous IAA Transport on Adventitious Root Formation in Phaseolus vulgaris Hypocotyl Cuttings (강낭콩 하배축 절편의 부정근형성에 미치는 내재 IAA의 이동)

  • 조덕이
    • Journal of Plant Biology
    • /
    • v.32 no.4
    • /
    • pp.323-330
    • /
    • 1989
  • This work was carried out to elucidate effects of endogenous and exogenous IAA transport on adventitious root formation in Phaseolus vulgaris hypocotyl cuttings. For inverted or normal incubation in distilled water, the adventitious root is always formed at the morphological base but not at the morphological apex. For inverted incubation, in both distilled water and certain chemical solution, the root formation is retarded more at the first stage (0-24 hr) than at the second stage (24-48 hr). When p-chlorophenoxyisobutyric acid (PCIB) was applied to the cuttings at the first stage, theroot formation was inhibited more than at the second stage. Treatment of 2,3,5-triiodobenzoic aicd (TIBA)markedly inhibited the adventitious root formation in Phaseolus vulgaris hypocotyl cuttings. This inhibition influenced the root according to the applied stage and period. Therefore, the root formation is more related to the stage of root primordium formation than to the stage of root elongation from the primordium. Inhibition of auxin transport oraction by TIBA or PCIB could also be reversed when hypocotyl cuttings are incubated in exogenously applied IAA solution.

  • PDF

Medium compositions reveal potential organogenesis in the diploid and tetrploid Codonopsis lanceolata

  • Kwon, Soo Jeong;Hwang, Ha Nule;Moon, Young Ja;Cho, Gab Yeon;Boo, Hee Ock;Lee, Moon Soon;Woo, Sun Hee;Kim, Hag Hyun
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.169-169
    • /
    • 2017
  • Medium composition plays a key role on influencing organogenesis in plant tissue culture. This study was carried out to examine the effects of medium composition on organogenesis in diploid and tetraploid Codonopsis lanceolata and obtain in-vitro mass propagation of superior species of C. lanceolata. Diploid C. lanceolata was found to be declined regarding MS medium composition for each concentration. However, shoot and adventitious root formation were suppressed with higher mineral salt concentration, and active growth of shoot and adventitious root was exhibited as 4.9 cm and 3.2 cm respectively in 1/2 MS medium. While in tetraploid C. lanceolata, it showed 2.9 cm and 3.2 cm respectively in 1/4 MS medium. In the case of sucrose concentration, no consistent decrease was observed for growth of shoot and the adventitious root of diploid both at high and low concentration. The growth of shoot (at 3% concentration) and adventitious root (at 7% concentration) was 2.3 cm and 2.0 cm respectively. Although there was no difference in shoot formation of tetraploid C. lanceolata in all concentrations with the range of 1.7~1.8, there was a slight decrease in shoot growth at high concentration. Results revealed that the adventitious root formation was suppressed at high concentration. The concentration of agar exhibited no significant difference in shoot formation of diploid C. lanceolata at all concentrations. The maximum result of adventitious growth (4.1 cm) was observed at 0.8% concentration. Slight inhibition of shoot formation and root formation of tetraploid C. lanceolata was observed at higher concentration. Shoot formation of diploid C. lanceolata also exhibited inhibition at higher concentration. Shoot formation of diploid C. lanceolata was increased at lower pH and shoot growth was the highest (2.3 cm) at pH 3.8. Adventitious root formation was higher at lower pH. However, both the adventitious root formation and growth exhibited comparatively higher result at pH 5.8. Taken together, the levels of pH had an effect on shoot and root formation in diploid and tetraploid of C. lanceolata

  • PDF

Mass Production of Adventitious Roots of Eleutherococcus sessiliflorus through the Bioreactor Culture

  • Seo Jin-Wook;Shin Cha-Gyun;Choi Yong-Eui
    • Journal of Plant Biotechnology
    • /
    • v.5 no.3
    • /
    • pp.187-191
    • /
    • 2003
  • This paper reported the establishment of mass production system of adventitious roots of Eleutherococcus sessiliflorus through the shake flask and bio-reactor culture. Induction of adventitious roots was started from the explants of germinated somatic embryos on half-strength Murashing and Skoog (MS) solid medium. The frequency of adventitious root formation was better in the explants comprising the basal hypocotyl parts than root explants alone. Among the different auxins tested (NAA, IBA and IAA), frequency of adventitious root induction was highest on medium with 0.5 mg/L NAA, and produced $16.3\pm1.9$ roots per explant. In shake-flask culture, deletion of $NH_4NO_3$ of MS medium was effective for induction of adventitious root compared with both full and half-strength MS media. Fresh weight increase of induced adventitious roots was performed well in medium with 0.5 mg/L IBA. When adventitious roots produced in shake-flask culture were transferred to 10-liter bioreactor, 5.5 times of fresh weight increase was gained after one month of culture. HPLC analysis revealed that the amount of eleutheroside E and E1 was higher in in vitro cultured adventitious roots than the 3 year-old field cultivated root barks of Eleutherococcus sessiliflorus. The content of eltutheroside B was much lower in adventitious roots than that of field cultivated one.

Effect of Plant Growth Regulators on the Adventitious Root Formation from Bupleurum falcatum Callus (생장조절물질(生長調節物質)이 시호(柴胡) 캘러스의 부정근(不定根) 형성(形成)에 미치는 영향(影響))

  • Seong, Rack-Seon;Cho, Duck-Yee;Soh, Woong-Young
    • Korean Journal of Medicinal Crop Science
    • /
    • v.5 no.1
    • /
    • pp.7-13
    • /
    • 1997
  • Calli induced from the leaf segment of Bupleurum falcatum were cultured on Mu-rashige and Skoog's(MS) medium supplemented with 2, 4-D, IBA, IAA and NAA of 0.1 mg/l , The induction of adventitious roots from callus was the best in MS medium supplemented with 0.1 mg/l 2, 4-D and the lateral root was the same. The pretreatment of 0.1 mg/l 2, 4-D for 120 hours was most effective for the formation and grwoth of adventitious roots. The number of adventitious roots per micro callus pre-treated with 0.1 mg/l 2, 4- D was 5. 3 which was the highest level. The callus subcultured for 4 weeks were best for the adventitious root formation. The callus subcultured for more than 4 weeks decreased the adventitious root formation and turned to brown in color.

  • PDF

Effect of Gibberellin on the Adventitious Root Formation from the Leaves-derived Calli in Persicaria perfoliata (며느리배꼽 잎 유래 캘러스의 부정근 형성에 미치는 지베렐린의 작용)

  • Kim, Hyeon;Cha, Hyeon-Cheol
    • Journal of Life Science
    • /
    • v.25 no.4
    • /
    • pp.390-396
    • /
    • 2015
  • This study was carried out to investigate the action of phytohormones which influence the adventitious root formation of calli originating from the leaves of Persicaria perfoliata. The optimal medium condition for callus formation was ½-strength MS, 1% sucrose, and 4.5 μM 2,4-D. In order to determine which phytohormones had an effect on the adventitious root formation, the calluses were cultured in various media with different kinds of phytohormones. As a result, the medium with GA3 or IAA was shown to induce root formation. To deeply investigate the effects of GA3 and IAA, calli were cultured in 0.1, 1, and 10 mg/l levels of phytohormones. Numbers of roots formed per callus were 10.9, 14.2, 22.6 in GA3, 5.8, 3.9, 1.1 in IAA, respectively. Therefore, the higher GA3 or the lower IAA concentration, the more roots formed. To confirm this role of GA3 we tested with inhibitors PBZ and NPA. GA3 with PBZ resulted in reduction by 52.4~69.4% compared to GA3 alone. In contrast, GA3 with NPA resulted in an increase by -8~45.6% compared to GA3 alone in root formation. Also, results were determined on the effect of GA3 with other phytohormones on root formation. Kinetin, 2iP and ABA with GA3 had a negative effect, but IAA with GA3 showed a similar result to GA3 alone. From these results we infer GA plays a key role and auxin has subsidiary activity on adventitious root formation. This is the first report that indicates GA3 promotes adventitious root formation from calli in P. perfoliata.

Determination Times for Induction of Adventitious Shoots, Roots, Trichomes, and Calli from Segments of Arabidopsis thaliana by NAA and BA (애기장대(Arabidopsis thaliana)잎 절편에서 NAA와 BA에 의한 신초, 부정근, 모용 및 캘러스 형성 결정 시기)

  • Kim, Song-Lim;Han, Tae-Jin
    • Journal of Plant Biotechnology
    • /
    • v.30 no.2
    • /
    • pp.161-165
    • /
    • 2003
  • The effect of NAA and Benzyladenine(BA) for determination times on the formation of adventitious shoots, roots trichmoes and calli in MS basal medium was investigated in leaf segments from ecotype 'Nosses' of Arabidopsis thalliana. Adventitious shoots, roots, trichomes and calli were formed fromed from leaf segments in a wede range of NAA and BA. The optimal combination of hormones for adventitious shoots formation, 20mg/L NAA for trichome formation, 100mg/L for callus formation. Inductive times for formation of adventitious shoots, roots, trichomes and calli were determined at 14, 4, 6 and 18 days respectively by periodical transfer of leaf segments from hormines containing media to hormone free medium.

Adventitious Root Culture and In Vitro Production of Dioscin from Smilax china L.

  • Kwon, Soon-Tae;An, Ju-Lee
    • Korean Journal of Plant Resources
    • /
    • v.21 no.6
    • /
    • pp.444-448
    • /
    • 2008
  • An adventitious root formation protocol from Smilax china L. was established for in vitro production of dioscin, a steroidal saponin having various bioactivities such as anticancer, antifungal, antiviral, and antiobesity. Optimal medium for root initiation from leaf explant was MS medium containing $30\;g{\cdot}L^{-1}$ of sucrose supplemented with $1.0\;mg{\cdot}L^{-1}$ kinetin + $2.0\;mg{\cdot}L^{-1}$ NAA. The induction of adventitious roots from in vitro initiated root segments was most favorable to MS liquid medium with $0.1\;mg{\cdot}L^{-1}$ kinetin + $2.0\;mg{\cdot}L^{-1}$ NAA. Among the 20 different adventitious roots originated from different plants, strain No. 10 was selected based on production ability of dioscin, and its stability through the successive suspension culture. The maximum growth stage of adventitious roots was noticed at 5 weeks after subculture while that of dioscin production in the adventitious root was at 7 weeks after subculture in suspension culture system. These results provide that suspension culture of adventitious roots of Smilax china L. have a potential for in vitro mass production of dioscin.

Effect of Ozonated Water Soaking on Adventitious Root Formation of Willow (Salix koreensis) Cuttings (오존수 처리가 버드나무(Salix koreensis) 삽수의 부정근 발생에 미치는 영향)

  • Kim, Sun Woo;Park, Ha Kyu;Hwang, Gyu Baek;Park, Jong Seok
    • Journal of Bio-Environment Control
    • /
    • v.31 no.1
    • /
    • pp.35-42
    • /
    • 2022
  • To investigate the effects of ozonated water concentration and soaking time on adventitious root formation of willow, we studied the efficiency of root cuttings in the revegetation technology of biological engineering of willows. The ozonated water concentrations were used for 5 minutes and 2 hours at 1, 5, 10, 15, 20 ppm by soaking method and then the shoot characteristics were observed. The number and length of adventitious roots were determined. The results indicated that 20 ppm of ozonated water for 2 hours and 1 ppm of ozonated water for 5 minutes resulted in leaves turned wither away and no adventitious root production. Considering the appearance, number and length of the adventitious root, soaking willow cuttings into the ozonated water with dissolved ozone concentration, 5 ppm for 2 hours and 10-15 ppm for 5 minutes were suitable for generating adventitious roots.