• Title/Summary/Keyword: advection-diffusion

Search Result 138, Processing Time 0.029 seconds

Two-Dimensional Numerical Simulation of Saltwater intrusion in Estuary with Sigma-Coordinate Transformation (연직좌표변환을 이용한 하구에서의 염수침투에 관한 2차원 수치모의)

  • Bae, Yong-Hoon;Park, Seong-Soo;Lee, Seung-Oh;Cho, Yong-Sik
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2007.05a
    • /
    • pp.1263-1267
    • /
    • 2007
  • A more complete two-dimensional vertical numerical model has been developed to describe the saltwater intrusion in an estuary. The model is based on the previous studies in order to obtain a better accuracy. The non-linear terms of the governing equations are analyzed and the $\sigma$-coordinate system is employed in the vertical direction with full transformation which is recently issued in several studies because numerical errors can be generated during the coordinate transformation of the diffusion term. The advection terms of the governing equations are discretized by an upwind scheme in second-order of accuracy. By employing an explicit scheme for the longitudinal direction and an implicit scheme for the vertical direction, the numerical model is free from the restriction of temporal step size caused by a relatively small grid ratio. In previous researches, some terms induced from the transformation have been intentionally excluded since they are asked the complicate discretization of the numerical model. However, the lack of these terms introduces significant errors during the numerical simulation of scalar transport problems, such as saltwater intrusion and sediment transport in an estuary. The numerical accuracy attributable to the full transformation is verified by comparing results with a previous model in a simply sloped topography. The numerical model is applied to the Han River estuary. Very reasonable agreements for salinity intrusion are observed.

  • PDF

Numerical Analysis for Two-Dimensional Compressible and Two-Phase Flow Fields of Air-Water in Eulerian Grid Framework (2차원 압축공기-물의 압축성 이상 유동 수치 해석)

  • Park, Chan-Wook;Lee, Sung-Su
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.6
    • /
    • pp.429-445
    • /
    • 2008
  • Two-phase compressible flow fields of air-water are investigated numerically in the fixed Eulerian grid framework. The phase interface is captured via volume fractions of each phase. A way to model two phase compressible flows as a single phase one is found based on an equivalent equation of states of Tait's type for a multiphase cell. The equivalent single phase field is discretized using the Roe‘s approximate Riemann solver. Two approaches are tried to suppress the pressure oscillation phenomena at the phase interface, a passive advection of volume fraction and a direct pressure relaxation with the compressible form of volume fraction equation. The direct pressure equalizing method suppresses pressure oscillation successfully and generates sharp discontinuities, transmitting and reflecting acoustic waves naturally at the phase interface. In discretizing the compressible form of volume fraction equation, phase interfaces are geometrically reconstructed to minimize the numerical diffusion of volume fraction and relevant variables. The motion of a projectile in a water-filled tube which is fired by the release of highly pressurized air is simulated presuming the flow field as a two dimensional one, and several design factors affecting the projectile movement are investigated.

A Review on the Photochemical Oxidant Modeling as Applied to Air Quality Studies in Complex Terrain

  • Hwa-Woon Lee;Yoo
    • Journal of Environmental Science International
    • /
    • v.1 no.1
    • /
    • pp.19-33
    • /
    • 1992
  • The high oxidants, which occur the daily maximum concentrations in the afternoon, are transported into the other region via long range transport mechanisms or trapped within the shallow mixing boundary layer and then removed physically (deposition, transport by mountain wind, etc.) and chemically (reaction with local sources). Therefore, modeling formation of photochemical oxidants requires a complex description of both chemical and meteorolog ital processecs . In this study, as a part of air quality studies, we reviewed various aspects of photochemical modeling on the basis of currently available literature. The result of the review shows that the model is based on a set of coupled continuity equations describing advection, diffusion, transport, deposition, chemistry, emission. Also photochemical oxidant models require a large amount of input data concerned with all aspects of the ozone life cycle. First, emission inventories of hydrocarbon and nitrogen oxides, with appropriate spatial and temporal resolution. Second, chemical and photochemical data allowing the quantitative description of the formation of ozone and other photochemically-generated secondary pollutants. Third, dry deposition mechanisms particularly for ozone, PAN and hydrogen peroxide to account for their removal by absorption on the ground, crops, natural vegetation, man-made and water surfaces. Finally, meteorological data describing the transport of primary pollutants away from their sources and of secondary pollutants towards the sensitive receptors where environmental damage may occur. In order to improve our present study, shortcomings and limitation of existing models are pointed out and verification Process through observation is emphasized.

  • PDF

Numerical simulation of single-phase two-components flow in naturally fractured oil reservoirs

  • Debossam, Joao Gabriel Souza;dos Santos Heringer, Juan Diego;de Souza, Grazione;Souto, Helio Pedro Amaral
    • Coupled systems mechanics
    • /
    • v.8 no.2
    • /
    • pp.129-146
    • /
    • 2019
  • The main goal of this work is to develop a numerical simulator to study an isothermal single-phase two-component flow in a naturally fractured oil reservoir, taking into account advection and diffusion effects. We use the Peng-Robinson equation of state with a volume translation to evaluate the properties of the components, and the discretization of the governing partial differential equations is carried out using the Finite Difference Method, along with implicit and first-order upwind schemes. This process leads to a coupled non-linear algebraic system for the unknowns pressure and molar fractions. After a linearization and the use of an operator splitting, the Conjugate Gradient and Bi-conjugated Gradient Stabilized methods are then used to solve two algebraic subsystems, one for the pressure and another for the molar fraction. We studied the effects of fractures in both the flow field and mass transport, as well as in computing time, and the results show that the fractures affect, as expected, the flow creating a thin preferential path for the mass transport.

Prediction of Leachate Migration from Waste Disposal Site to Underground LPG Storage Facility and Review of Contamination Control Method by Numerical Simulations (수치모의를 통한 지하 LPG 저장시설에 인접한 폐기물매립지에서의 침출수이동 예측 및 제어공법 검토)

  • 한일영;서일원;오경택
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.3 no.2
    • /
    • pp.51-59
    • /
    • 1996
  • In case waste disposal site is to be constructed close to the underground facilities such as LPG storage cavern which is completely maintained by groundwater pressure, it is generally requested that the possibility on leachate contamination of cavern area be reviewed and the countermeasure, if it is estimated cavern area is severely affected by leachate, be taken into consideration. Prediction was performed and leachate control plan was made using by analytical and the numerical analysis on the leachate migration which is likely to happen at the area between the proposed waste disposal site and the underground LPG storage cavern located at the U petrochemical complex. Analytical solutions were obtained by the conservative mass advection-diffusion equation and the effect of advection and dispersion factor on the leachate migration was reviewed through peclet number calculation and the functional relationship between the factors and leachate transport velocity was established, which leads to enable us to predict the leachate transport velocity without difficulties when different parameters (factors) are used for analytical solution. Numerical solutions were obtained by FEM using AQUA2D which is for the simulation of groundwater flow and contaminant transport. 3-D discrete fracture models were simulated and fracture flow analysis was performed and feasibility study on the water-curtain system was conducted through the fracture connectivity analysis in rock mass. As results of those analyses, it was interpreted that the leachate would trespass on the LPG storage cavern area in 30 years from the proposed wate disposal site and the vertical water-curtain system was effective mathod for the prevention of leachate's migration further into the cavern area.

  • PDF

Application of Non-hydrostatic Free Surface Model for Three-Dimensional Viscous Flows (비정수압 자유수면 모형의 3차원 점성 흐름에의 적용)

  • Choi, Doo-Yong
    • Journal of Korea Water Resources Association
    • /
    • v.45 no.4
    • /
    • pp.349-360
    • /
    • 2012
  • A horizontally curvilinear non-hydrostatic free surface model that was applicable to three-dimensional viscous flows was developed. The proposed model employed a top-layer equation to close kinematic free-surface boundary condition, and an isotropic k-${\varepsilon}$ model to close turbulence viscosity in the Reynolds averaged Navier-Stokes equation. The model solved the governing equations with a fractional step method, which solved intermediate velocities in the advection-diffusion step, and corrects these provisional velocities by accounting for source terms including pressure gradient and gravity acceleration. Numerical applications were implemented to the wind-driven currents in a two-dimensional closed basin, the flow in a steep-sided trench, and the flow in a strongly-curved channel accounting for secondary current by the centrifugal force. Through the numerical simulations, the model showed its capability that were in good agreement with experimental data with respect to free surface elevation, velocity, and turbulence characteristics.

The Prediction of Water Quality in Ulsan Area Using Material Cycle Model (물질순환모델을 이용한 울산해역의 수질예측)

  • SHIN BUM-SHICK;KIM KYU-HAN;PYUN CHONG-KUN
    • Journal of Ocean Engineering and Technology
    • /
    • v.20 no.1 s.68
    • /
    • pp.55-62
    • /
    • 2006
  • Recently, pollution by development in coastal areas is going from bad to worse. The Korean government is attempting to make policies that prevent water pollution, but it is still difficult to say whether such measures are lowering pollution to an acceptable level. More specifically, the general investigation that has been done in KOREA does not accurately reflect the actual conditions of pollution in coastal areas. An investigation that quantitatively assesses water quality management using rational prediction technology must be attempted, and the ecosystem model, which incorporates both the 3-dimensional hydrodynamic and material cycle models, is the only one with a broad enough scope to obtain accurate results. The hydrodynamic model, which includes advection and diffusion, accounts for the ever-changing flow and (quality) of water in coastal areas, while the material cycle model accounts for pollutants and components of decomposition as sources of the carbon, phosphorus, and nitrogen cycles. In this paper, we simulated the rates of dissolved oxygen (DO), chemical oxygen demand (COD), total nitrogen(T-N) and total-phosphorous(T-P) in Korea's Ulsan Area. Using the ecosystem model, we did simulations using a specific set of parameters and did comparative analysis to determine those most appropriate for the actual environmental characteristics of Ulsan Area. The simulation was successful, making it now possible to predict the likelihood of coastal construction projects causing ecological damage, such as eutrophication and red tide. Our model can also be used in the environmental impact assessment (EIA) of future development projects in the ocean.

Water Quality Prediction Model in a Lake by Finite Element Method;Application to Sapkyo Lake (유한요소법에 의한 호소의 수질예측모형;삽교 담수호에 적용하여)

  • Ryu, Byong-Ro;Ahn, Sang-Jin
    • Korean Journal of Environmental Agriculture
    • /
    • v.8 no.1
    • /
    • pp.37-46
    • /
    • 1989
  • A 2-dimensional pollutant transport phenomenon in shallow reservoirs was analyzed by using a finite element method. The Galerkin's weighted residual method, based on linear interpolation, was used and a triangle was adopted as an element. The two dimensional Stock's equation and the advection-diffusion equation integrated over depth were used as governing equations. Also the Newton-Raphson method was introduced to solve the non-linear terms of the equation. The results calculated by the model are in good agreement with the analytical solution for a simplified channel where a known solution is avaiable. An actual application of the model is attempted for Sapkyo Lake with a consideration of the influx of the Sapkyo Chun, the Muhan Chun and kogkyo Chun. Further refined research is needed to evaluate the water quality in the other reservoirs.

  • PDF

Suspended Sediment Concentrations over Ripples for Waves (파랑존재시 해저 모래결위의 부유사 농도분포)

  • Kim, Hyo-Seop;Kim, Tae-Hyeong
    • Journal of Korea Water Resources Association
    • /
    • v.33 no.2
    • /
    • pp.181-193
    • /
    • 2000
  • This paper presents the flow and the suspended sediment movement over ripples for oscillatory flows. A new numerical model system is developed, and applied to a laboratory experimental condition of regular waves and a fictitious condition of irregular waves. The flow field is obtained from a programme proposed by Kim et. al.(1994), which is a modified version of SOLA based on SMAC scheme. The sub-model solves the continuity and Reynolds momentum equations in the x-z plane. The wave orbital velocities, shear stresses, and pressure are all reasonably reproduced by the model. The model results on the vertical velocity component show good agreement with the measurements. The suspended sediment transport sub-model is newly set up to solve the advection-diffusion equation of suspended sediment using a split method, and involving a special shear entrainment from the whole ripple surface. The calculated suspended sediment concentrations for regular waves show reasonable agreement with measurements at Deltaflume. The model results for random waves show that the suspended sediment concentration is higher than those for regular waves and that the sediment diffuses higher than for regular waves with the significant wave height and the peak wave period of the irregular waves.

  • PDF

Dispersion of High Temperature and High Salinity Water Discharged from Offshore Desalination Plant (해상 담수화 공장에서 배출되는 고온고염 해수의 확산예측)

  • Lee Moonjin;Hong Keyyong
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.3 no.2
    • /
    • pp.33-40
    • /
    • 2000
  • Dispersion of high temperature and high salinity water discharged from a desalination plant is numerically estimated to investigate its impact on marine environment. The plant is installed on a floating barge located in Jinhae Bay and takes 200 tons of seawater per day. Fifty tons of intake are changed into fresh water, while 150 tons of those are discharged as the water of 15℃ warmer and 1.33 times saltier than surrounding seawater. In this dispersion model, advection is described by two-dimensional tidal currents and turbulent diffusion is simulated by Monte Carlo technique. Decay of water temperature is modelled by heat exchange between the atmosphere and the ocean, while decay of water salinity is ignored. The distributions of temperature and salinity come to equilibrium when the dispersion model is run for 100 days for temperature and for 365 days for salinity, respectively. At equilibrium state the water temperature and salinity rise 0.01℃ and 0.001‰ higher than ambient seawater, respectively.

  • PDF