• Title/Summary/Keyword: advanced thermal analysis

Search Result 782, Processing Time 0.028 seconds

A Study on the Correlation between Temperature and CMP Characteristics (CMP특성과 온도의 상호관계에 관한 연구)

  • Gwon, Dae-Hui;Kim, Hyeong-Jae;Jeong, Hae-Do;Lee, Eung-Suk;Sin, Yeong-Jae
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.10
    • /
    • pp.156-162
    • /
    • 2002
  • There are many factors affecting the results of CMP (Chemical Mechanical Polishing). Among them, the temperature is related to the removal rate and WIWNU (Within Wafer Non-Uniformity). In other words, the removal rate is proportional to the temperature and the variation of temperature distribution on a pad affects the non-uniformity within a wafer. In the former case, the active chemistry improves the rate of chemical reaction and the removal rate becomes better. But, there are not many advanced studies. In the latter case, a kinematical analysis between work-piece and pad can be obtained. And such result analysed from the mechanical aspect can be directly related to the temperature distribution on a pad affecting WIWNU. Meanwhile, the temperature change affects the quantities of both slurry and pad. The change of a pH value of the slurry chemistry due to a temperature variation affects the surface state of an abrasive particle and hence the agglomeration of abrasives happens above the certain temperature. And the pH alteration also affects the zeta potential of a pad surface and therefore the electrical force between pad and abrasive changes. Such results could affect the removal rate and etc. Moreover, the temperature changes the 1st and 2nd elastic moduli of a pad which are closely related to the removal rate and the WIWNU.

A Study on the Heat Transfer Characteristics of Liquid Droplet Radiator for Air Conditioning (공기조화용 액적방열기의 열전달특성에 관한 연구)

  • 김금무;김춘식;김용모;김종헌
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.19 no.4
    • /
    • pp.17-26
    • /
    • 1995
  • In general existing air conditioning devices, which are carried out by convection heat transfer, are very popular compared with the radiation type air conditioning devices. But perconal convection tpe air conditioning units are unuseful air conditioning type because it handles amount of surrounded air to meet the temperature and humidity. In this view, this study is intended to develope personal dir conditioning units using a radiation type radiator. Liquid Droplet Radiator(L.P.R.) radiates the energy by means of thermal radiation. Radiative energy from L.P.R. is the infrared rays which heat the objects without lose of energy. It is a desirable heating method for the local area within the large room. In this study, the analysis uses the Monte Carlo methd to predict the temperature distribution in the droplet sheet and the net heat flux from the L.D.R.. And for this study and experiment was carried out to analyse the radiative and convective heat transfer characteristics in the L.D.R.. And the experiment was investigated the effects of inlet temperature, feed rate, optical thickness and droplet diameter on heat transfer characteristics of L.D.R.. The obtained results from the numerical and experimental studies of L.D.R. were as follows ; (1) The heat flux of L.D.R. was effected by extinction coefficient of droplet sheet, optical thickness and droplet temperature, surface area and emissivity of the droplet. And it was increased with the temperature, feed rate and optical thickness, on the other hand decreased with increasing of droplet diameter. (2) The experimental results for heat flux was ecalucted below 20% than that of the numerical solution by Monte Carlo method, but the tendency of the variation shows relatively good agreement.

  • PDF

Research Trends for Performance, Safety, and Comfort Evaluation of Agricultural Tractors: A Review

  • Kabir, Md. Shaha Nur;Ryu, Myong-Jin;Chung, Sun-Ok;Kim, Yong-Joo;Choi, Chang-Hyun;Hong, Soon-Jung;Sung, Je-Hoon
    • Journal of Biosystems Engineering
    • /
    • v.39 no.1
    • /
    • pp.21-33
    • /
    • 2014
  • Background: Significant technological development and changes happened in the tractor industries. Contrariwise, the test procedures of the major standard development organizations (SDO's) remained unchanged or with a little modification over the years, demanding new tractor test standards or improvement of existing ones for tractor performance, safety, and comfort. Purpose: This study focuses on reviewing the research trends regarding performance, safety and comfort evaluation of agricultural tractors. Based on this review, few recommendations were proposed to revise or improve the current test standards. Review: Tractor power take-off power test using the DC electric dynamometer reduced human error in the testing process and increased the accuracy of the test results. GPS signals were used to determine acceleration and converted into torque. High capacity double extended octagonal ring dynamometer has been designed to measure drawbar forces. Numerical optimization methodology has been used to design three-point hitch. Numerous technologies, driving strategies, and transmission characteristics are being considered for reducing emissions of gaseous and particulate pollutants. Engine emission control technology standards need to be revised to meet the exhaust regulations for agricultural tractors. Finite Element Analysis (FEA) program has been used to design Roll-Over Protective Structures (ROPS). Program and methodology has been presented for testing tractor brake systems. Whole-body vibration emission levels have been found to be very dependent upon the nature of field operation performed, and the test track techniques required development/adaptation to improve their suitability during standardized assessment. Emphasizes should be given to improve visibility and thermal environment inside the cab for tractor operator. Tractors need to be evaluated under electromagnetic compatibility test conditions due to large growing of electronic devices. Research trends reviewed in this paper can be considered for possible revision or improvement of tractor performance, safety, and comfort test standards.

Effect of surface treatments on shear bond strength of resin composite bonded to CAD/CAM resin-ceramic hybrid materials

  • Gungor, Merve Bankoglu;Nemli, Secil Karakoca;Bal, Bilge Turhan;Unver, Senem;Dogan, Aylin
    • The Journal of Advanced Prosthodontics
    • /
    • v.8 no.4
    • /
    • pp.259-266
    • /
    • 2016
  • PURPOSE. The purpose of this study was to assess the effect of surface treatments on shear bond strength of resin composite bonded to thermocycled and non-thermocycled CAD/CAM resin-ceramic hybrid materials. MATERIALS AND METHODS. 120 specimens ($10{\times}10{\times}2mm$) from each material were divided into 12 groups according to different surface treatments in combination with thermal aging procedures. Surface treatment methods were airborne-particle abrasion (abraded with 50 micron alumina particles), dry grinding (grinded with $125{\mu}m$ grain size bur), and hydrofluoric acid (9%) and silane application. According to the thermocycling procedure, the groups were assigned as non-thermocycled, thermocycled after packing composites, and thermocycled before packing composites. The average surface roughness of the non-thermocycled specimens were measured after surface treatments. After packing composites and thermocycling procedures, shear bond strength (SBS) of the specimens were tested. The results of surface roughness were statistically analyzed by 2-way Analysis of Variance (ANOVA), and SBS results were statistically analyzed by 3-way ANOVA. RESULTS. Surface roughness of GC were significantly lower than that of LU and VE (P<.05). The highest surface roughness was observed for dry grinding group, followed by airborne particle abraded group (P<.05). Comparing the materials within the same surface treatment method revealed that untreated surfaces generally showed lower SBS values. The values of untreated LU specimens showed significantly different SBS values compared to those of other surface treatment groups (P<.05). CONCLUSION. SBS was affected by surface treatments. Thermocycling did not have any effect on the SBS of the materials except acid and silane applied GC specimens, which were subjected to thermocycling before packing of the composite resin.

Comparison of fracture strength after thermomechanical aging between provisional crowns made with CAD/CAM and conventional method

  • Reeponmaha, Tanapon;Angwaravong, Onauma;Angwarawong, Thidarat
    • The Journal of Advanced Prosthodontics
    • /
    • v.12 no.4
    • /
    • pp.218-224
    • /
    • 2020
  • PURPOSE. The objectives of this study were to evaluate the fracture strength and fracture patterns of provisional crowns fabricated from different materials and techniques after receiving stress from a simulated oral condition. MATERIALS AND METHODS. A monomethacrylate-based resin (Unifast Trad) and a bis-acryl-based (Protemp 4) resin were used to fabricate provisional crowns using conventional direct technique. A milled monomethacrylate resin (Brylic Solid) and a 3D-printed bis-acrylate resin (Freeprint Temp) were chosen to fabricate provisional crowns using the CAD/CAM process. All cemented provisional crowns (n=10/group) were subjected to thermal cycling (5,000 cycles at 5°-55℃) and cyclic occlusal load (100 N at 4 Hz for 100,000 cycles). Maximum force at fracture was tested using a universal testing machine. RESULTS. Maximum force at fracture (mean ± SD, N) of each group was 657.87 ± 82.84 for Unifast Trad, 1125.94 ± 168.07 for Protemp4, 953.60 ± 58.88 for Brylic Solid, and 1004.19 ± 122.18 for Freeprint Temp. One-way ANOVA with Tamhane post hoc test showed that the fracture strength of Unifast Trad was statistically significantly lower than others (P<.01). No statistically significant difference was noted among other groups. For failure pattern analysis, Unifast Trad and Brylic Solid showed less damage than Protemp 4 and Freeprint Temp groups. CONCLUSION. Provisional crowns fabricated using the CAD/CAM process and the conventionally fabricated bis-acryl resins exhibited significant higher fracture strength compared to conventionally fabricated monomethacrylate resins after the aging regimen. Therefore, CAD/CAM milling and 3D printing of provisional restorations may be good alternatives for long term provisionalization.

A Study on the Control of Microstructures of Polyalphaolefins via Cationic Polymerization (양이온 중합을 이용한 폴리알파올레핀의 미세구조 조절에 관한 연구)

  • Ko, Young Soo;Kwon, Wan-Seop;No, Myoung-Han;Yim, Jin-Heong
    • Polymer(Korea)
    • /
    • v.39 no.2
    • /
    • pp.346-352
    • /
    • 2015
  • Polyalphaolefin (PAO) is a synthetic lubricant that is superior to mineral-based lubricants in the terms of physical and chemical characteristics such as low pour point, high viscosity index (VI), and thermal and oxidation stability. Several kinds of PAOs have been synthesized by using 1-pentene, 1-hexene, 1-octene, or 1-dodecene as monomer with three kinds of aluminum-based Lewis acid catalysts via cationic polymerization. The control of the catalytic performance and physical properties of PAO such like molecular weight, kinematic viscosity, pour point, and viscosity index was done by changing polymerization parameters. The alkyl aluminum halide-based catalysts show better catalytic activity than that of the conventional $AlCl_3$ catalyst. The microstructure of PAO was investigated by means of TOF-MS (time of flightmass spectroscopy) analysis in order to elucidate the correlation between the performances of the lubricant (VI, pour point) and the molecular structure of PAO. The VI of PAO increases with increases in the carbon number of ${\alpha}$-olefin. In other words, the performances of PAO as a lubricant strongly depended on the branch length of PAO.

Synthesis and Characterization of New Main Chain Liquid Crystalline Coumarin Compound with Ester Moiety (Ester기를 갖는 새로운 주쇄형 액정 coumarin 화합물의 합성 및 특성분석)

  • Lee, Jong-Back;Kang, Byung-Chul;Lee, Gang-Choon;Lee, Dong-Jin;Hideyuki, Kihara
    • Elastomers and Composites
    • /
    • v.44 no.4
    • /
    • pp.416-422
    • /
    • 2009
  • 4-(6-bromohexyloxy)benzoic acid was synthesized from benzyl 4-Hydroxybenzoate and 1,6-dibromohexane. It was reacted with hydroquinone to obtain a new mesogenic ester having an bromine group. One kind of new photoresponsive coumarin compound was prepared by the reaction of mesogenic ester with coumarin sensitive to the ultraviolet. Structures of the compound were identified by FT-IR and $^1H$-NMR spectroscopies. Their phase transition temperatures and thermal stability were also investigated by differential scanning calorimetry (DSC), polarized optical microscopy (POM) and x-ray diffraction analysis. From optical polarizing microscopy, the prepared compound was found to show enantiotropic liquid crystallinity with smectic and nematic textures.

Failure Analysis of Air Vent Connected with Heat Supply Pipeline Under Manhole (맨홀에 설치된 지역난방 열공급관 에어벤트의 전단부 파손 원인 규명)

  • Cho, Jeongmin;Chae, Hobyung;Kim, Heesan;Kim, Jung-Gu;Kim, Woo Cheol;Jeong, Joon Cheol;Lee, Soo Yeol
    • Corrosion Science and Technology
    • /
    • v.19 no.4
    • /
    • pp.196-202
    • /
    • 2020
  • The air vent connected to a heat supply pipeline in the district heating system has been used to eliminate the existing air in the pipe, which has a detrimental effect on corrosion durability and heat efficiency. Recently, the air vent installed under a manhole for 22 years was corroded and several pinholes were detected in the front-end of the air vent. To identify the cause of the failure, thickness reduction, corrosion products, and water quality were examined. The corrosion damage was significant at the outside of the front-end of the air vent where the insulator was covered. While a thin oxide layer was formed in the interior of the tube, the coarse and porous corrosion products consisting of magnetite and hematite were found externally. Water flowing into the thermal insulator was absorbed by the insulator following hydrolysis. The hydrolyzed insulator ejected the corrosion factors such as Cl-, SO42-, and NH4+. The findings suggest that the corrosion under insulation due to rain water is the main cause of the underlying failure in the air vent.

Application of Open-source OpenFOAM for Simulating Combustion and Heating Performance in Horizontal CGL Furnace (수평형 CGL 소둔로의 연소 및 가열 성능 해석을 위한 오픈소스 OpenFOAM 기반 전산유체 해석)

  • Kim, GunHong;Oh, Kyung-Teak;Kang, Deok-Hong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.41 no.8
    • /
    • pp.553-561
    • /
    • 2017
  • The main motivation for this study was to establish a CFD-based procedure for the analysis of heating characteristics, particularly in industrial furnaces. As certain open-source software packages have gained popularity in dealing with complex industrial problems, the OpenFOAM framework was selected for further development of advanced physical models to meet industrial requirements. In this study, the newly developed comprehensive model was applied to simulate physical processes in the full-scale horizontal furnace of a continuous galvanizing line (CGL). The numerical results obtained indicate that the current approach predicts heating characteristics reasonably well. It was also found that radiative heat transfer plays a dominant role in heating the moving strip. To improve the predictability of our method, further work is required to model the turbulence-chemistry interaction realistically, as well as to impose a physically correct thermal wall boundary condition.

CONCEPTUAL DESIGN OF THE SODIUM-COOLED FAST REACTOR KALIMER-600

  • Hahn, Do-Hee;Kim, Yeong-Il;Lee, Chan-Bock;Kim, Seong-O;Lee, Jae-Han;Lee, Yong-Bum;Kim, Byung-Ho;Jeong, Hae-Yong
    • Nuclear Engineering and Technology
    • /
    • v.39 no.3
    • /
    • pp.193-206
    • /
    • 2007
  • The Korea Atomic Energy Research Institute has developed an advanced fast reactor concept, KALIMER-600, which satisfies the Generation IV reactor design goals of sustainability, economics, safety, and proliferation resistance. The concept enables an efficient utilization of uranium resources and a reduction of the radioactive waste. The core design has been developed with a strong emphasis on proliferation resistance by adopting a single enrichment fuel without blanket assemblies. In addition, a passive residual heat removal system, shortened intermediate heat-transport system piping and seismic isolation have been realized in the reactor system design as enhancements to its safety and economics. The inherent safety characteristics of the KALIMER-600 design have been confirmed by a safety analysis of its bounding events. Research on important thermal-hydraulic phenomena and sensing technologies were performed to support the design study. The integrity of the reactor head against creep fatigue was confirmed using a CFD method, and a model for density-wave instability in a helical-coiled steam generator was developed. Gas entrainment on an agitating pool surface was investigated and an experimental correlation on a critical entrainment condition was obtained. An experimental study on sodium-water reactions was also performed to validate the developed SELPSTA code, which predicts the data accurately. An acoustic leak detection method utilizing a neural network and signal processing units were developed and applied successfully for the detection of a signal up to a noise level of -20 dB. Waveguide sensor visualization technology is being developed to inspect the reactor internals and fuel subassemblies. These research and developmental efforts contribute significantly to enhance the safety, economics, and efficiency of the KALIMER-600 design concept.