• Title/Summary/Keyword: advanced thermal analysis

Search Result 782, Processing Time 0.023 seconds

Design of Level 2 Control System for Continuous Reheat Furnaces (연속식 가열로의 Level 2 제어 시스템 설계)

  • Ryu, BoHyun;Lee, JaeYong;Rhim, DongRyul;Cha, JaeMin;Yeom, ChoongSub
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.12 no.1
    • /
    • pp.113-120
    • /
    • 2016
  • Steel in a continuous reheat furnace is heated to higher temperature to be treated in the rolling steel process. Due to this reason the continuous reheat furnace system requires an optimal control system to adjust the temperature inside the furnace. Level 2 control systems for continuous reheat furnaces generate automatic heating set points for the level 1 system of the furnace based on the mathematical thermal model which can give a good estimation of steel heating inside the furnace and is used to adjust heating requirements to optimize furnace combustion. For the current study the analytic methodology based on the design procedure from the systems engineering to develop new level 2 control system of a continuous reheat furnace was proposed. The system analysis and the requirements of the level 2 control system were derived using the unified modeling language (UML) 2.0, and the design of database and the graphic user interface (GUI) for the level 2 control system were conducted.

Effects of Drying Temperature on the $LiCoO_2$ Thin Films Fabricated by Sol-gel Method

  • Kim, Mun-Kyu;Park, Kyu-Sung;Kim, Duk-Su;Son, Jong-Tae;Kim, Ho-Gi
    • Journal of the Korean Ceramic Society
    • /
    • v.38 no.9
    • /
    • pp.777-781
    • /
    • 2001
  • $LiCoO_{2}$ thin films have received attention as cathodes of thin film microbatteries in these days. In this study, $LiCoO_{2}$ thin films are fabricated by a sol-gel spin coating method followed by a post-annealing process. The thermal decomposition behaviour of precursor is investigated by TG/DTA analysis. The change of crystallinity, microstructure and electrochemical properties of final films as the drying temperature changes are also studied by XRD, SEM and galvanostatic charge/discharge cycling test. The relationship between the discharge capacity and the drying temperature are intensively investigated in this work.

  • PDF

Effect of Electron Beam Currents on Stabilization of Polyacrlonitrile Precursor Fiber (PAN 전구체 섬유의 안정화시 전자선 전류의 영향)

  • Shin, Hye Kyoung;Jeun, Joon Pyo;Kim, Hyun bin;Kang, Phil Hyun
    • Journal of Radiation Industry
    • /
    • v.5 no.1
    • /
    • pp.41-46
    • /
    • 2011
  • Polyacrylonitrile (PAN) fibers are the most widely used precursor of the materials for carbon fibers. The conventional process of carbon fibers from PAN precursor fiber includes two step; stabilization at low temperature and carbonization at high temperature. Compared to thermal stabilization, the stabilization process by electron beam (E-beam) irradiation is a advanced and brief method. However, a stabilization by E-beam irradiation was required a high dose (over 5,000 kGy) and spend over 1.5 hr (1.14 MeV, 1 mA). In the present work the main goal is exploring a quick stabilization process by cotrolling E-beam currents. The effect of various E-beam currents on stabilization of PAN precursor fiber was studied by gel fraction test, thermo gravimertic analysis (TGA), differential scanning calorimetry (DSC), tensile strength, and scanning electron microscopy (SEM) images.

Deformation Analysis of Impact Damaged Composite Tube Using Thermal Shearography

  • Kim, Koung-Suk;Chang, Ho-Seob;Jang, Su-Ok;Lee, Seung-Seok;Jang, Wan-Sik;Jung, Hyun-Chul
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.28 no.3
    • /
    • pp.302-308
    • /
    • 2008
  • Composite materials are widely used as structural materials for aerospace engineering because of its excellent mechanical properties such as light weight, high stiffness, and low thermal expansion. In driving, impact damage is one of the common but dangerous damages, caused by internal failure of the laminas interface which is not detected by in the surface. Many techniques to detect defects or delaminate between laminates have been reported. Shearography is a kind of laser speckle pattern interferometry with the advantages of non-destructive, non-contact, high resolution and displacement slope measurement. In this paper, the shearography is used to evaluate non-destructively impact damaged surface of the composite material and a measuring method using shearography for the thermal deformation of a impact damaged composite material is discussed. The basic principles of the technique are also described briefly.

Ground Air Heat Exchanger Design and Analysis for Air Source Heat Pump (공기열원 히트펌프를 위한 공기식 지중 열교환기(GAHX) 설계 및 분석 연구)

  • Lee, Kwang-Seob;Lyu, Nam-Jin;Kang, Eun-Chul;Lee, Euy-Joon
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.12 no.2
    • /
    • pp.1-6
    • /
    • 2016
  • A ground air heat exchanger (GAHX), also called earth air heat exchanger is a useful technology to be integrated with other renewable energy technologies. In this study, ground-air heat exchanger system for the air source heat pump is introduced. The purpose of this study is to design the volumetric flow rate and the length of GAHX system. A GAHX length model equation has been developed and used for calculation. GAHX thermal efficiency are recommended as 75% and 85% in order to optimize pipe length. $2,750m^3/h$, $2,420m^3/h$ of volumetric flow rate on 88.3m, 111.7m length are suggested for providing 7.5kW thermal capacity. And the number of path is recommended more than two to minimize pressure drop. For future study, advanced model equation study with ground thermal behavior and a more efficient GAHX design will be considered.

Development of Integrated Control Methods for the Heating Device and Surface Openings based on the Performance Tests of the Rule-Based and Artificial-Neural-Network-Based Control Logics (난방시스템 및 개구부의 통합제어를 위한 규칙기반제어법 및 인공신경망기반제어법의 성능비교)

  • Moon, Jin Woo
    • KIEAE Journal
    • /
    • v.14 no.3
    • /
    • pp.97-103
    • /
    • 2014
  • This study aimed at developing integrated logic for controlling heating device and openings of the double skin facade buildings. Two major logics were developed-rule-based control logic and artificial neural network based control logic. The rule based logic represented the widely applied conventional method while the artificial neural network based logic meant the optimal method. Applying the optimal method, the predictive and adaptive controls were feasible for supplying the advanced thermal indoor environment. Comparative performance tests were conducted using the numerical computer simulation tools such as MATLAB (Matrix Laboratory) and TRNSYS (Transient Systems Simulation). Analysis on the test results in the test module revealed that the artificial neural network-based control logics provided more comfortable and stable temperature conditions based on the optimal control of the heating device and opening conditions of the double skin facades. However, the amount of heat supply to the indoor space by the optimal method was increased for the better thermal conditioning. The number of on/off moments of the heating device, on the other hand, was significantly reduced. Therefore, the optimal logic is expected to beneficial to create more comfortable thermal environment and to potentially prevent system degradation.

Development and Analysis of the Highly Efficient Support System in a Liquid Hydrogen Vessel (액체수소 저장탱크용 고효율 지지 시스템 개발 및 해석)

  • Yun, Sang-Kook;Park, Dong-Heun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.31 no.4
    • /
    • pp.363-369
    • /
    • 2007
  • Probably the most significant heat transfer in the cryogenic liquid hydrogen storage tank from the atmosphere may occur through its support system. In this paper the efficient support system for the cryogenic storage vessel was newly developed and analysed. The support system was composed of a spherical ball as a supporter to reduce the contact area. which is located between two supporting SUS tubes inserted SUS and PTFE blocks. Numerical analyses for temperature distribution, and the thermal stress and strain of the support system were performed by the commercial codes FLUENT and ANSYS. The heat transfer rate of the supporter was evaluated by the thermal boundary potential method which can consider the variation of thermal conductivity with temperature. The results showed that the heat transfer rate through the developed supporter compared with the common SUS tube supporter was significantly reduced. The thermal stress and strain were obtained well below the limited values. It was found that the developed supporter can be one of the most efficient support systems for cryogenic liquid storage vessel.

Thermal Stability and Mechanical Interfacial Properties of DGEBA/PMR-15 Blend System Initiated by Cationic Latent Thermal Catalyst (잠재성 양이온 개시제를 이용한 DGEBA/PMR-15 블렌드계의 열안정성 및 기계적 계면 특성에 관한 연구)

  • Park, Soo-Jin;Lee, Hwa-Young;Han, Mijeong;Hong, Sung-Kwon
    • Journal of Adhesion and Interface
    • /
    • v.5 no.1
    • /
    • pp.3-11
    • /
    • 2004
  • In this work, the cure behaviors of the DGEBA/PMR-15 blends initiated by N-benzylpyrazinium hexafluoroantimonate (BPH) as a cationic latent catalyst were performed in DSC and DMA analyses. And, the thermal stabilities were carried out by TGA analysis and their mechanical interfacial properties of blends were measured in the context of critical stress intensity factor ($K_{IC}$). As a result, the curing activation energy ($E_a$) determined from Ozawa's equation in DSC and the relaxation activation energy ($E_r$) from DMA were increased with increasing PMA-15 content. Also, the thermal stabilities obtained from the integral procedural decomposition temperature (IPDT) and the glass transition temperature ($T_g$) were highly improved with increasing the PMR-15 content, which were probably due to the high heat resistance. And, the $K_{IC}$ showed a similar behavior with $E_a$, which was attributed to the improving of the interfacial adhesion or hydrogen bondings between intermolecular chains.

  • PDF

Effect of critical flow model in MARS-KS code on uncertainty quantification of large break Loss of coolant accident (LBLOCA)

  • Lee, Ilsuk;Oh, Deogyeon;Bang, Youngseog;Kim, Yongchan
    • Nuclear Engineering and Technology
    • /
    • v.52 no.4
    • /
    • pp.755-763
    • /
    • 2020
  • The critical flow phenomenon has been studied because of its significant effect for design basis accidents in nuclear power plants. Transition points from thermal non-equilibrium to equilibrium are different according to the geometric effect on the critical flow. This study evaluates the uncertainty parameters of the critical flow model for analysis of DBA (Design Basis Accident) with the MARS-KS (Multi-dimensional Analysis for Reactor Safety-KINS Standard) code used as an independent regulatory assessment. The uncertainty of the critical flow model is represented by three parameters including the thermal non-equilibrium factor, discharge coefficient, and length to diameter (L/D) ratio, and their ranges are determined using large-scale Marviken test data. The uncertainty range of the thermal non-equilibrium factor is updated by the MCDA (Model Calibration through Data Assimilation) method. The updated uncertainty range is confirmed using an LBLOCA (Large Break Loss of Coolant Accident) experiment in the LOFT (Loss of Fluid Test) facility. The uncertainty ranges are also used to calculate an LBLOCA of the APR (Advanced Power Reactor) 1400 NPP (Nuclear Power Plants), focusing on the effect of the PCT (Peak Cladding Temperature). The results reveal that break flow is strongly dependent on the degree of the thermal non-equilibrium state in a ruptured pipe with a small L/D ratio. Moreover, this study provides the method to handle the thermal non-equilibrium factor, discharge coefficient, and length to diameter (L/D) ratio in the system code.

Preparation and Thermal Performance Evaluation of Heat Storage paint with MPCM for Reducing Urban Heat Island Effect (도시 열섬현상 저감을 위한 MPCM 적용 축열도료 제조 및 열적성능 평가)

  • Jeong, Su-Gwang;Kang, Yujin;Wi, Seunghwan;Chang, Seong Jin;Kim, Sumin
    • Journal of the Korean Solar Energy Society
    • /
    • v.35 no.4
    • /
    • pp.17-24
    • /
    • 2015
  • The formation of heat islands causes high energy demand for space cooling and peak cooling loads in conditioned buildings. High-temperature fluctuations on a building roof may cause mechanical stress and increase surface deterioration. Thermal energy storage (TES) systems using microencapsulated phase-change materials (MPCMs) have been recognized as one of the most advanced energy technologies for enhancing the energy efficiency and sustainability of buildings. In this study, we prepared MPCM/paint composites for mitigating the heat island effect and reducing peak temperature. In addition, we carried out thermal and physical analysis of prepared MPCM composite samples by means of SEM, FTIR spectroscopy, DSC, and TGA. Further, we evaluated the dynamic heat transfer performance of heat-storage tiles painted with 10 g of heat-storage paint. From the obtained results, we deduced that MPCM/hydrophilic paint composites are more applicable to various fields, including the building sector, than MPCM/hydrophobic paint composites. On the basis of SEM and FTIR spectroscopy results, we concluded that materials with hydrophilic properties are more compatible with MPCMs than those with hydrophobic properties. In addition, DSC analysis results revealed that MPCM/hydrophilic paint composites have better compatibility, higher latent heat capacity, and better thermal properties than other composites. TGA results showed that hydrophilic-paint-based composites have higher thermal durability than hydrophobic-paint-based composites. Finally, a lot of MPCM-loaded heat-storage tiles showed lower peak temperatures at all measurement positions.