• Title/Summary/Keyword: advanced thermal analysis

Search Result 782, Processing Time 0.023 seconds

Experimental and numerical analysis of new bricks made up of polymer modified-cement using expanded vermiculite

  • Koksal, Fuat;del Coz Diaz, Juan J.;Gencel, Osman;Alvarez Rabanal, Felipe P.
    • Computers and Concrete
    • /
    • v.12 no.3
    • /
    • pp.319-335
    • /
    • 2013
  • In this paper, the properties of the cement mortar modified with styrene acrylic ester copolymer were investigated. Expanded vermiculite as lightweight aggregate was used for making the polymer modified mortar test specimens. To study the effect of polymer-cement ratio and vermiculite-cement ratio on various properties, specimens were prepared by varying the polymer-cement and vermiculite-cement ratios. Tests of physical properties such as density, water absorption, thermal conductivity, three-point flexure and compressive tests were made on the specimens. Furthermore, a coupled thermal-structural finite element model of an entire corner wall was modelled in order to study the best material configuration. The wall is composed by a total of 132 bricks of $120{\times}242{\times}54$ size, joined by means of a contact-bonded model. The use of advanced numerical methods allows us to obtain the optimum material properties. Finally, comparisons of polymer-cement and vermiculite-cement ratios on physical properties are given and the most important conclusions are exposed.

STATE OF THE ART IN USING BEST ESTIMATE CALCULATION TOOLS IN NUCLEAR TECHNOLOGY

  • D'AURIA FRANCESCO;ANIS BOUSBIA-SALAH;PETRUZZI ALESSANDRO;NEVO ALESSANDRO DEL
    • Nuclear Engineering and Technology
    • /
    • v.38 no.1
    • /
    • pp.11-32
    • /
    • 2006
  • System thermal-hydraulic codes have been used in the past decades in the areas of design, operation, licensing and safety of Nuclear Power Plants (NPPs). The development and validation of these codes have reached a high degree of maturity, through the consideration of huge experiments and advanced numerical models. Nowadays, the analyses are based upon realistic approaches rather than the conservative evaluation models. However the applications of these computational tools require preliminary qualification issues. Although huge amounts of financial and human resources have been invested for the development and improvement of codes, the calculation results are still affected by errors. In the sophisticated nuclear technology, design and safety of NPP, these errors must be quantified. An overview of the state of the art of the current thermal-hydraulic system code is developed and the need of uncertainty analysis in code calculations is emphasized. Several sources of uncertainty have been classified and commented, and typical applications of such methods are shown.

Characteristics of Carbonaceous Aerosols Measured at Gosan - Based on Analysis of Thermal Distribution by Carbon Analyzer and Organic Compounds by GCMS (제주도 고산지역 탄소 성분의 특성 분석 - 유기탄소의 열광학적 특성 및 유기성분 중심으로)

  • Bae, Min-Suk;Park, Seung-Shik;Kim, Young Joon
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.29 no.6
    • /
    • pp.722-733
    • /
    • 2013
  • Ground-based measurements were conducted from August 25 to September 8 of 2011 for understanding characteristics of carbonaceous aerosols measured at Gosan. Chemical components and their sources were discussed by analysis of organic compounds with identification of primary and secondary products in particulate matter. Thus, organic carbon (OC) and elemental carbon (EC) based on the carbonaceous thermal distribution (CTD), which provides detailed carbon signature characteristics relative to analytical temperature, was used to improve the carbon fractionation of the analytical method. In addition, organic compounds by gas chromatography technique with the backward trajectories were discussed for characteristics of carbonaceous aerosols. Different air-masses were classified related to the OC thermal signatures and the organic molecular markers such as aromatic acids and PAHs. We concluded that the aging process was influenced by the long-range transport from East Sea area.

The baking analysis for vacuum vessel and plasma facing components of the KSTAR tokamak (KSTAR 토카막 진공용기 및 플라즈마 대향 부품의 탈기체 처리를 위한 가열 해석)

  • Lee, K.H.;Im, K.H.;Cho, S.;Kim, J.B.;Woo, H.K.
    • Proceedings of the KSME Conference
    • /
    • 2000.11b
    • /
    • pp.247-254
    • /
    • 2000
  • The base pressure of vacuum vessel of the KSTAR (Korea Superconducting Tokamak Advanced Research) Tokamak is to be a ultra high vacuum, $10^{-6}{\sim}10^{-7}Pa$, to produce clean plasma with low impurity containments. For this purpose, the KSTAR vacuum vessel and plasma facing components need to be baked up to at least $250^{\circ}C,\;350^{\circ}C$ respectively, within 24 hours by hot nitrogen gas from a separate baking/cooling line system to remove impurities from the plasma-material interaction surfaces before plasma operation. Here by applying the implicit numerical method to the heat balance equations of the system, overall temperature distributions of the KSTAR vacuum vessel and plasma facing components are obtained during the whole baking process. The model for 2-dimensional baking analysis are segmented into 9 imaginary sectors corresponding to each plasma facing component and has up-down symmetry. Under the resulting combined loads including dead weight, baking gas pressure, vacuum pressure and thermal loads, thermal stresses in the vacuum vessel during bakeout are calculated by using the ANSYS code. It is found that the vacuum vessel and its supports are structurally rigid based on the thermal stress analyses.

  • PDF

A Study on Structural Design of Cryogenic Miniature Globe Valve using Finite Element Method (유한요소법을 이용한 극저온 미니어쳐 글로브 밸브의 구조설계에 관한 연구)

  • Jeong, Ho-Seung;Cho, Jong-Rae;Kim, Jeong-Hwan;Kim, Jung-Ryul;Park, Jae-Hyoun;Kim, Young-Hwan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.31 no.4
    • /
    • pp.343-349
    • /
    • 2007
  • This cryogenic miniature globe valve is used to transfer the liquified natural gas which temperature is $-169^{\circ}C$, supplied pressure is 30bar(3.0MPa). In the present work the temperature distribution and thermal deformation is calculated numerical the FE method is useful to predict the thermal matter of cryogenic miniature globe valve. For this reason, to optimum design of the cryogenic miniature globe valve the analysis of the parameter about bonnet has been studied. It's used 3-D modeling to analyze cryogenic globe valve, which is 1/2". Numerical study used 3-D modeling makes a decision of efficient process of product before producing in the factory. A commercial software(ANSYS 10.0) is used in the structural analysis for cryogenic globe valve.

Electromagnetic and Thermal Analysis of Phase Change Memory Device with Heater Electrode (발열 전극에 따른 상변화 메모리 소자의 전자장 및 열 해석)

  • Jang, Nak-Won;Mah, Suk-Bum;Kim, Hong-Seung
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.31 no.4
    • /
    • pp.410-416
    • /
    • 2007
  • PRAM (Phase change random access memory) is one of the most promising candidates for next generation non-volatile memories. However, the high reset current is one major obstacle to develop a high density PRAM. One way of the reset current reduction is to change the heater electrode material. In this paper, to reduce the reset current for phase transition, we have investigated the effect of heater electrode material parameters using finite element analysis. From the simulation. the reset current of PRAM cell is reduced from 2.0 mA to 0.72 mA as the electrical conductivity of heater is decreased from $1.0{\times}10^6\;(1/{\Omega}{\cdot}m$) to $1.0{\times}10^4\;(1/{\Omega}{\cdot}m$). As the thermal conductivity of heater is decreased, the reset current is slightly reduced. But the reset current of PRAM cell is not changed as the specific heat of heater is changed.

Failure Analysis of an Inlet Pipe of a Governor Valve in a Steam Turbine of a District Heating System (지역난방 증기 터빈 내 조속기 밸브 Inlet pipe 파손 원인 분석)

  • Chae, Hobyung;Kim, Woo Cheol;Kim, Heesan;Kim, Jung-Gu;Lee, Soo Yeol
    • Corrosion Science and Technology
    • /
    • v.21 no.1
    • /
    • pp.62-67
    • /
    • 2022
  • The objective of this study was to perform failure analysis of an inlet pipe located in a governor valve of a steam turbine in a district heating system. During the operation, the temperature of the governor valve was increased to as high as ~500 ℃, which induced thermal expansion of the inlet pipe along both axial and radial directions. While the inlet pipe did not have contact with the valve seat, the side plane of the upside was constrained by the casing part, which led the inlet pipe to experience stress field in the form of fatigue and creep. The primary crack was initiated at about 30 mm below the top where the complex stress field was anticipated. These results suggest that the main failure mechanism is a combination of thermal fatigue and creep during the operation supported by the observation of apparent beach marks on the fracture surface and pores near the cracks, respectively.

Effect of Thermal Discharge from Semiconductor Factory into Stream on Freshwater Fish

  • Je-Bin Yu;Sun-Jib Kim
    • International Journal of Advanced Culture Technology
    • /
    • v.11 no.2
    • /
    • pp.375-380
    • /
    • 2023
  • The study was conducted in Manu-stream, located in Paju, Gyeonggi-do, from January 2021 to December 2021. The survey points were selected in the upper and lower streams based on where thermal discharged to investigate water temperature and fish species and biological community analysis and growth rate were analyzed. The average annual water temperature difference between the upper and lower stream is about 11.0℃, and in the case of the lower stream area, the water temperature is maintained at 20.0℃ or more per year. Fish that appeared during the survey period decreased lower stream compared to the upper stream, which is believed to be the result of a decrease in temperature-sensitive species as the simple riverbed structure and water temperature increased compared to the upper stream. As a result of biological community analysis, it showed a relatively stable community state at the upper stream. The growth rate of fish has a high regression coefficient b value in lower streams throughout the four seasons. It showed relatively good growth lower stream, with a high water temperature. However, the results of each survey point are similar from season to season. The indicator species is a resistant intermediate species, and the range of resistance to water temperature is wide, so it is judged that water temperature's effect on the indicator species' growth is low.

Investigation of a Thermal Stress for the Unit Cell of a Solid Oxide Fuel Cell (고체산화물 연료전지 단위셀의 열응력에 관한 연구)

  • Kim, Young-Jin;Park, Sang-Kyun;Roh, Gill-Tae;Kim, Mann-Eung
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.35 no.4
    • /
    • pp.414-420
    • /
    • 2011
  • Thermal stress analysis of a planar anode-supported SOFC considering electrochemical reactions has been performed under operating conditions where average current density varies from 0 to 2000 $A/m^2$. For the case of the 2000 $A/m^2$ operating condition, Structural stress analysis based on the temperature distributions obtained from the CFD analysis of the unit cell has also been done. From this one way Fluid-Structure Interaction(FSI) analysis, Maximum Von-Mises stress under negligible temperature gradient fields occurs when cell components are perfectly bonded. The maximum stress of the electrolyte, cathode and anode in a unit cell SOFC is 262.58MPa, 28.55MPa and 15.1MPa respectively. The maximum thermal stress is critically dependent on static friction coefficient.

Thermal analysis and optimization of the new ICRH antenna Faraday Screen in EAST

  • Q.C. Liang ;L.N. Liu ;W. Zhang ;X.J. Zhang ;S. Yuan ;Y.Z. Mao ;C.M. Qin;Y.S. Wang ;H. Yang
    • Nuclear Engineering and Technology
    • /
    • v.55 no.7
    • /
    • pp.2621-2627
    • /
    • 2023
  • In Experimental Advanced Superconducting Tokamak (EAST) experiments, to achieve long pulse and high-power ICRH system operation, a new kind of ICRH antenna has been designed. One of the most critical factors in limiting the operation of long pulse and high power is the intense heat load in the front face of the ICRH antenna, especially the Faraday Screen (FS). Therefore, the cooling channels of FS need to be designed. According to thermal-hydraulic analysis, the FS tubes are divided into several groups to achieve more excellent water cooling capability. The number of series and parallel tubes in one group is chosen as six. This antenna went into service in the spring of 2021, and it is delightful that the temperature distribution of the FS tube is below 400 ℃ in 14.5 s and 1.8 MW ICRH system operation. However, the active water-cooling design was not carried out on the upper and lower plates of FS, which led to severe ablations on that region under long pulse and high power operation, and the temperature is up to 800. Therefore, the upper and lower side plates of the FS were designed with water cooling based on thermal-hydraulic analysis. During the 2022 winter experiments, the temperature of ICRH antenna FS was lower than 400 in the pulse of 200s and the power of 1 MW operation.