• Title/Summary/Keyword: advanced thermal analysis

Search Result 782, Processing Time 0.024 seconds

Conceptual design of small modular reactor driven by natural circulation and study of design characteristics using CFD & RELAP5 code

  • Kim, Mun Soo;Jeong, Yong Hoon
    • Nuclear Engineering and Technology
    • /
    • v.52 no.12
    • /
    • pp.2743-2759
    • /
    • 2020
  • A detailed computational fluid dynamics (CFD) simulation analysis model was developed using ANSYS CFX 16.1 and analyzed to simulate the basic design and internal flow characteristics of a 180 MW small modular reactor (SMR) with a natural circulation flow system. To analyze the natural circulation phenomena without a pump for the initial flow generation inside the reactor, the flow characteristics were evaluated for each output assuming various initial powers relative to the critical condition. The eddy phenomenon and the flow imbalance phenomenon at each output were confirmed, and a flow leveling structure under the core was proposed for an optimization of the internal natural circulation flow. In the steady-state analysis, the temperature distribution and heat transfer speed at each position considering an increase in the output power of the core were calculated, and the conceptual design of the SMR had a sufficient thermal margin (31.4 K). A transient model with the output ranging from 0% to 100% was analyzed, and the obtained values were close to the Thot and Tcold temperature difference value estimated in the conceptual design of the SMR. The K-factor was calculated from the flow analysis data of the CFX model and applied to an analysis model in RELAP5/MOD3.3, the optimal analysis system code for nuclear power plants. The CFX analysis results and RELAP analysis results were evaluated in terms of the internal flow characteristics per core output. The two codes, which model the same nuclear power plant, have different flow analysis schemes but can be used complementarily. In particular, it will be useful to carry out detailed studies of the timing of the steam generator intervention when an SMR is activated. The thermal and hydraulic characteristics of the models that applied porous media to the core & steam generators and the models that embodied the entire detail shape were compared and analyzed. Although there were differences in the ability to analyze detailed flow characteristics at some low powers, it was confirmed that there was no significant difference in the thermal hydraulic characteristics' analysis of the SMR system's conceptual design.

Analysis of Loss of Offsite Power Transient Using RELAP5/MOD1/NSC; II: KNU1 Design-Base Simulation (RELAP5/MOD1/NSC를 이용한 원자력 1호기 외부전원상실사고해석;II:설계기준사고)

  • Kim, Hyo-Jung;Chung, Bub-Dong;Lee, Young-Jin;Kim, Jin-Soo
    • Nuclear Engineering and Technology
    • /
    • v.18 no.3
    • /
    • pp.175-182
    • /
    • 1986
  • The KNUI (Korea Nuclear Unit 1) loss of offsite power transient as a design-base accident has been simulated using the RELAP5/MOD1/NSC computer code. The analysis is carried out using the best-estimate methodology, but the sequence and its assumptions are based on the evaluation methodology th at emphasizes conservatism. Important thermal-hydraulic parameters such as average temperature, steam generator level and pressurizer water volume are compared with the results in the KNU1 Final Safety Analysis Report (FSAR). The present analysis gives much lower RCS average temperature and pressurizer water volume, and much higher S/G water volume at the turnaround point, which may be considered to be additional improved safety margins. This is expected since the present analysis deals with the best-estimate thermal-hydraulic models as well as the initial conditions on a best-estimate basis. These additional safety margins may contribute to further validate the safety of the KNU1 in this type of accidents(Decrease in Heat Removal by the Secondary System).

  • PDF

A Comparative Study on Thermal Efficiency Between the Present Floor and a Ceramic Floor (기존온돌과 세라믹구들의 열효율 비교 연구)

  • Kim, Young Man;Kim, Kyung Sung;Choi, Beom Suk;Ko, Jae Sik;Park, Seung Ku
    • Analytical Science and Technology
    • /
    • v.12 no.2
    • /
    • pp.166-170
    • /
    • 1999
  • A ceramic floor with improved thermal conductivity and efficiency has been developed in this study. The new ceramic floor minimizes the shrinkage rate to below 0.07% and shows almost no cleavage. There is no need to repaire the ceramic floor because its bottom surface is flat. It especially shows an excellent perfomance in the test of a compressive strength ($300kg/cm^2$ based on 28 days), a flexural strength ($64kg/cm^2$ based on 28 days), and a convenient pressing. It is lighter than the present floor and it is expected to be applicable for a self-leveling ceramic motar in the residences and apartments. It shows an excellent character in the thermal conductivity and other physical properties compare to the present cement mortar.

  • PDF

Thermal Analysis of Nickel-Base Superalloys by Differential Scanning Calorimetry (시차주사열량측정법에 의한 니켈기 초내열 합금의 열분석)

  • Yun, Jihyeon;Oh, Junhyeob;Kim, Hongkyu;Yun, Jondo
    • Korean Journal of Materials Research
    • /
    • v.26 no.5
    • /
    • pp.235-240
    • /
    • 2016
  • Appropriate thermo-mechanical properties of nickel-based superalloys are achieved by heat treatment, which induces precipitation and solid solution hardening; thus, information on the temperature ranges of precipitation and dissolution of the precipitates is essential for the determination of the heat treatment condition. In this study, thermal analyses of nickel-based superalloys were performed by differential scanning calorimetry method under conditions of various heating rates of 5, 10, 20, or 40K/min in a temperature range of 298~1573K. Precipitation and dissolution temperatures were determined by measuring peak temperatures, constructing trend lines, and extrapolating those lines to the zero heating rate to find the exact temperature under isothermal condition. Determined temperatures for the precipitation reactions were 813, 952, and 1062K. Determined onset, peak, and offset temperatures of the first dissolution reaction were 1302, 1388, and 1406K, respectively, and those values of the second dissolution reaction were 1405, 1414, and 1462K. Determined solvus temperature was 1462K. The study showed that it was possible to use a simple method to obtain accurate phase transition temperatures under isothermal condition.

Evaluations of Sb20Se80-xGex (x = 10, 15, 20, and 25) Glass Stability from Thermal, Structural and Optical Properties for IR Lens Application

  • Jung, Gun-Hong;Kong, Heon;Yeo, Jong-Bin;Lee, Hyun-Yong
    • Journal of the Korean Ceramic Society
    • /
    • v.54 no.6
    • /
    • pp.484-491
    • /
    • 2017
  • Chalcogenide glasses have been investigated in their thermodynamic, structural, and optical properties for application in various opto-electronic devices. In this study, the $Sb_{20}Se_{80-x}Ge_x$ with x = 10, 15, 20, and 25 were selected to investigate the glass stability according to germanium ratios. The thermal, structural, and optical properties of these glasses were measured by differential scanning calorimetry (DSC), X-ray diffraction (XRD), and UV-Vis-IR Spectrophotometry, respectively. The DSC results revealed that $Ge_{20}Sb_{20}Se_{60}$ composition showing the best glass stability theoretically results due to a lower glass transition activation energy of 230 kJ/mol and higher crystallization activation energy of 260 kJ/mol. The structural and optical analyses of annealed thin films were carried out. The XRD analysis reveals obvious results associated with glass stabilities. The values of slope U, derived from optical analysis, offered information on the atomic and electronic configuration in Urbach tails, associated with the glass stability.

γ-ray Radiation Induced Synthesis and Characterization of α-Cobalt Hydroxide Nanoparticles

  • Kim, Sang-Wook;Kwon, Bob-Jin;Park, Jeong-Hoon;Hur, Min-Goo;Yang, Seung-Dae;Jung, Hyun
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.4
    • /
    • pp.910-914
    • /
    • 2010
  • A novel synthetic route has been developed to prepare $\alpha$-cobalt hydroxide with intercalated nitrate anions. It was successfully synthesized by $\gamma$-ray irradiation under simple conditions, i.e., air atmosphere, without base. Under $\gamma$-ray irradiation, it leads to the formation of layered cobalt hydroxynitrate compounds which have small crystalline size and have the role of a generator of hydroxyl anion. Structural and morphological characterizations were performed by using power X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), and high resolution transmission electron microscopy (HR-TEM). The component and thermal stability of the sample were respectively measured by Fourier transform infrared (FT-IR) spectroscopy, elemental analysis, and thermal analyses, including thermogravimetry (TG) and differential thermal analysis (DTA).

Comparative study of constitutive relations implemented in RELAP5 and TRACE - Part II: Wall boiling heat transfer

  • Shin, Sung Gil;Lee, Jeong Ik
    • Nuclear Engineering and Technology
    • /
    • v.54 no.5
    • /
    • pp.1860-1873
    • /
    • 2022
  • Nuclear thermal-hydraulic system analysis codes have been developed to comprehensively model nuclear reactor systems to evaluate the safety of a nuclear reactor system. For analyzing complex systems with finite computational resources, system codes usually solve simplified fluid equations for coarsely discretized control volumes with one-dimensional assumptions and replace source terms in the governing equations with constitutive relations. Wall boiling heat transfer models are regarded as essential models in nuclear safety evaluation among many constitutive relations. The wall boiling heat transfer models of two widely used nuclear system codes, RELAP5 and TRACE, are analyzed in this study. It is first described how wall heat transfer models are composed in the two codes. By utilizing the same method described in Part 1 paper, heat fluxes from the two codes are compared under the same thermal-hydraulic conditions. The significant factors for the differences are identified as well as at which conditions the non-negligible difference occurs. Steady-state simulations with both codes are also conducted to confirm how the difference in wall heat transfer models impacts the simulation results.

Contribution of thermal-hydraulic validation tests to the standard design approval of SMART

  • Park, Hyun-Sik;Kwon, Tae-Soon;Moon, Sang-Ki;Cho, Seok;Euh, Dong-Jin;Yi, Sung-Jae
    • Nuclear Engineering and Technology
    • /
    • v.49 no.7
    • /
    • pp.1537-1546
    • /
    • 2017
  • Many thermal-hydraulic tests have been conducted at the Korea Atomic Energy Research Institute for verification of the SMART (System-integrated Modular Advanced ReacTor) design, the standard design approval of which was issued by the Korean regulatory body. In this paper, the contributions of these tests to the standard design approval of SMART are discussed. First, an integral effect test facility named VISTA-ITL (Experimental Verification by Integral Simulation of Transients and Accidents-Integral Test Loop) has been utilized to assess the TASS/SMR-S (Transient and Set-point Simulation/Small and Medium) safety analysis code and confirm its conservatism, to support standard design approval, and to construct a database for the SMART design optimization. In addition, many separate effect tests have been performed. The reactor internal flow test has been conducted using the SCOP (SMART COre flow distribution and Pressure drop test) facility to evaluate the reactor internal flow and pressure distributions. An ECC (Emergency Core Coolant) performance test has been carried out using the SWAT (SMART ECC Water Asymmetric Two-phase choking test) facility to evaluate the safety injection performance and to validate the thermal-hydraulic model used in the safety analysis code. The Freon CHF (Critical Heat Flux) test has been performed using the FTHEL (Freon Thermal Hydraulic Experimental Loop) facility to construct a database from the $5{\times}5$ rod bundle Freon CHF tests and to evaluate the DNBR (Departure from Nucleate Boiling Ratio) model in the safety analysis and core design codes. These test results were used for standard design approval of SMART to verify its design bases, design tools, and analysis methodology.

Industrial application of WC-TiAlN nanocomposite films synthesized by cathodic arc ion plating system on PCB drill

  • Lee, Ho. Y.;Kyung. H. Nam;Joo. S. Yoon;Jeon. G. Han;Young. H. Jun
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2001.06a
    • /
    • pp.3-3
    • /
    • 2001
  • Recently TiN, TiAlN, CrN hardcoatings have adapted many industrial application such as die, mold and cutting tools because of good wear resistant and thermal stability. However, in terms of high speed process, general hard coatings have been limited by oxidation and thermal hardness drop. Especially in the case of PCB drill, high speed cutting and without lubricant process condition have not adapted these coatings until now. Therefore more recently, superhard nanocomposite coating which have superhard and good thermal stability have developed. In previous works, WC-TiAlN new nanocomposite film was investigated by cathodic arc ion plating system. Control of AI concentration, WC-TiAlN multi layer composite coating with controlled microstructure was carried out and provides additional enhancement of mechanical properties as well as oxidation resistance at elevated temperature. It is noted that microhardness ofWC-TiA1N multi layer composite coating increased up to 50 Gpa and got thermal stability about $900^{\circ}C$. In this study WC-TiAlN nanocomposite coating was deposited on PCB drill for enhancement of life time. The parameter was A1 concentration and plasma cleaning time for edge sharpness maintaining. The characteristic of WC-TiAlN film formation and wear behaviors are discussed with data from AlES, XRD, EDS and SEM analysis. Through field test, enhancement of life time for PCB drill was measured.

  • PDF

Synthesis and Characterization of Wholly Aromatic Polyester Liquid Crystalline Thermosets (전방향족 폴리에스터 열경화성 액정의 합성과 특성)

  • Moon, Hyun-Gon;Jung, Myung-Sup;Chang, Jin-Hae
    • Polymer(Korea)
    • /
    • v.36 no.1
    • /
    • pp.9-15
    • /
    • 2012
  • We prepared a series of aromatic liquid crystals (LCs) based on wholly aromatic ester units with the reactive end group methyl maleimide by means of melt condensation method, and the resulting LCs were thermally crosslinked to produce liquid crystalline thermoset (LCT) films. The synthesized LCs and LCTs were characterized with Fourier transform infrared (FTIR) spectroscopy, wide angle X-ray diffraction (WAXD), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), thermomechanical analysis (TMA), and polarizing optical microscopy (POM) with a hot stage. The glass transition temperature ($T_g$) and coefficient of thermal expansion are strongly affected by the mesogen units in their main chain structures. The $p$-substituted biphenyl LC was found to have the highest thermal property value.