• 제목/요약/키워드: advanced thermal analysis

Search Result 782, Processing Time 0.027 seconds

Thermal Emissivity of Nuclear Graphite as a Function of its Oxidation Degree (3): Structural Study using Scanning Electron Microscope and X-Ray Diffraction

  • Seo, Seung-Kuk;Roh, Jae-Seung;Kim, Suk-Hwan;Chi, Se-Hwan;Kim, Eung-Seon
    • Carbon letters
    • /
    • v.12 no.1
    • /
    • pp.8-15
    • /
    • 2011
  • We study the relationships between the thermal emissivity of nuclear graphites (IG-110, PCEA, IG-430 and NBG-18) and their surface structural change by oxidation using scanning electron microscope and X-ray diffraction (XRD). The nonoxidized (0% weight loss) specimen had the surface covered with glassy materials and the 5% and 10% oxidized specimens, however, showed high roughness of the surface without glassy materials. During oxidation the binder materials were oxidized first and then graphitic filler particles were subsequently oxidized. The 002 interlayer spacings of the non-oxidized and the oxidized specimens were about $3.38{\sim}3.39{\AA}$. There was a slight change in crystallite size after oxidation compared to the nonoxidized specimens. It was difficult to find a relationship between the thermal emissivity and the structural parameters obtained from the XRD analysis.

Characterization of Electron Beam Cured Epoxy Acrylate (에폭시 아크릴레이트의 전자선 영향 평가)

  • Shin, Jin-Wook;Oh, Byung-Hwan;Ko, Keum-Jin;Jeun, Joon Pyo;Kang, Phil Hyun
    • Journal of Radiation Industry
    • /
    • v.4 no.3
    • /
    • pp.271-276
    • /
    • 2010
  • Epoxy resin has wide application in various industrial fields because of their good mechanical strength, superiority adhesion and low shrinkage etc. And the typical curing method for epoxy resins is thermal and press compaction. However, a curing method was used electron beam process in this study. Epoxy acrylate was fabricated from mixture of epoxy, acrylic acid, tetraphenylporphyrin (TPP) and hydroquinone monomethyl ether (MEHQ) with mole ratios. Then electron beam irradiation effect on the curing of the epoxy acrylate resin was investigated various absorption dose in nitrogen atmospheres at room temperature. The dynamic mechanical and thermal properties of the irradiated epoxy acrylate resins were characterized using dynamic mechanical analysis (DMA) and thermogravimetric analyzer (TGA). And the tensile and flexural strength were measured by an universal tensile machine (UTM).

Impact of axial power distribution on thermal-hydraulic characteristics for thermionic reactor

  • Dai, Zhiwen;Wang, Chenglong;Zhang, Dalin;Tian, Wenxi;Qiu, Suizheng;Su, G.H.
    • Nuclear Engineering and Technology
    • /
    • v.53 no.12
    • /
    • pp.3910-3917
    • /
    • 2021
  • Reactor fuel's power distribution plays a vital role in designing the new generation thermionic Space Reactor Power Systems (SRPS). In this paper, the 1/12th SPACE-R's full reactor core was numerically analyzed with two kinds of different axial power distribution, to identify their impacts on thermal-hydraulic and thermoelectric characteristics. In the benchmark study, the maximum error between numerical results and existing data or design values ranged from 0.2 to 2.2%. Four main conclusions were obtained in the numerical analysis: a) The axial power distribution has less impact on coolant temperature. b) Axial power distribution influenced the emitter temperature distribution a lot, when the core power was cosine distributed, the maximum temperature of the emitter was 194 K higher than that of the uniform power distribution. c) Comparing to the cosine axial power distribution, the uniform axial power distribution would make the maximum temperature in each component of the reactor core much lower, reducing the requirements for core fuel material. d) Voltage and current distribution were similar to the axial electrode temperature distribution, and the axial power distribution has little effect on the output power.

A modified JFNK with line search method for solving k-eigenvalue neutronics problems with thermal-hydraulics feedback

  • Lixun Liu;Han Zhang;Yingjie Wu;Baokun Liu;Jiong Guo;Fu Li
    • Nuclear Engineering and Technology
    • /
    • v.55 no.1
    • /
    • pp.310-323
    • /
    • 2023
  • The k-eigenvalue neutronics/thermal-hydraulics coupling calculation is a key issue for reactor design and analysis. Jacobian-free Newton-Krylov (JFNK) method, featured with super-linear convergence rate and high efficiency, has been attracting more and more attention to solve the multi-physics coupling problem. However, it may converge to the high-order eigenmode because of the multiple solutions nature of the k-eigenvalue form of multi-physics coupling issue. Based on our previous work, a modified JFNK with a line search method is proposed in this work, which can find the fundamental eigenmode together with thermal-hydraulics feedback in a wide range of initial values. In detail, the existing modified JFNK method is combined with the line search strategy, so that the intermediate iterative solution can avoid a sudden divergence and be adjusted into a convergence basin smoothly. Two simplified 2-D homogeneous reactor models, a PWR model, and an HTR model, are utilized to evaluate the performance of the newly proposed JFNK method. The results show that the performance of this proposed JFNK is more robust than the existing JFNK-based methods.

Thermal Analysis of Compact Circular Water Cooled Engine Oil Cooler (고집적 원통형 수냉식 엔진 오일쿨러의 열적 해석)

  • 윤준규
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.22 no.6
    • /
    • pp.771-781
    • /
    • 1998
  • A highly compact and thermally efficient water cooled oil cooler for automotive use without offset strip fin and casing is developed in this study. The study result has shown that eliminating the fin and casing in the oil cooler the manufacturing process and cost and can be simplified and reduced greatly without sacrificing the thermal capacity. The oil cooler developed in the study uses the dimply type heat transfer core element design instead of offset strip fin and eliminates the outer casing for coolant water flow by applying specially made parallel loop flow design. In the study the thermal design program for the present oil cooler also was developed and validated experimentally.

  • PDF

Thermal Performance Analysis of a Shell-and-Tube Heat Exchanger with Plate Fins of Various Shape (다양한 형상의 판형 휜을 장착한 원통다관형 열교환기의 열성능 해석)

  • 신지영;손영석
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.4
    • /
    • pp.648-656
    • /
    • 2004
  • In this study, a highly efficient shell-and-tube heat exchanger with plate fins is considered to improve thermal performance of the conventional shell-and-tube heat exchanger. This type of shell-and-tube heat exchanger with plate fins of various shape is simulated three-dimensionally using a commercial thermal-fluid analysis code. CFX4.4. The effect of the shape of the plate fin on heat transfer characteristics is also investigated by the simulation. Plate fins of four different shapes. plane, plane-slit. wave. and wave-slit fins, are considered. The flow fields, pressure drop and heat transfer characteristics in the heat exchanger are calculated. It is proved that the shell-and-tube heat exchanger with plate fins is superior to the conventional shell-and-tube heat exchanger without plate fins in terms of heat transfer. The shape of the plate fin is important in the performance of a heat exchanger such as heat transfer and pressure drop.

LBLOCA AND DVI LINE BREAK TESTS WITH THE ATLAS INTEGRAL FACILITY

  • Baek, Won-Pil;Kim, Yeon-Sik;Choi, Ki-Yong
    • Nuclear Engineering and Technology
    • /
    • v.41 no.6
    • /
    • pp.775-784
    • /
    • 2009
  • This paper summarizes the tests performed in the ATLAS facility during its first two years of operation (2007${\sim}$2008). Two categories of tests have been performed successfully: (a) the reflood phase of the large-break loss-of-coolant accidents in a cold leg, and (b) the breaks in one of four direct vessel injection lines. Those tests contributed to understanding the unique thermal-hydraulic behavior, resolving the safety-related concerns and providing an evaluation of the safety analysis codes and methodology for the advanced pressurized water reactor, APR1400. Several important and interesting phenomena have been observed during the tests. In most cases, the ATLAS shows reasonable accident characteristics and conservative results compared with those predicted by one-dimensional safety analysis codes. A wide variety of small-break LOCA tests will be performed in 2009.

Numerical Study on the Thermal Characteristics of the Various Cooling Methods in Electronic Equipment

  • Son, Young-Seok;Shin, Jee-Young
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.1
    • /
    • pp.46-55
    • /
    • 2004
  • Thermal characteristics of the various cooling methods in electronic equipment are studied numerically. A common chip cooling system is modeled as a parallel channel with protruding heat sources. A two-dimensional model has been developed for the numerical analysis of compressible. viscous. laminar flow. and conjugate heat transfer between parallel plates with uniform block heat sources. The finite volume method is used to solve this problem. The assembly consists of two channels formed by two covers and one printed circuit board that is assumed to have three uniform heat source blocks. Various cooling methods are considered to find out the efficient cooling method in a given geometry and heat sources. The velocity and the temperature fields. the local temperature distribution along the surface of blocks. and the maximum temperature in each block are obtained. The results are compared to examine the thermal characteristics of the different cooling methods both quantitatively and qualitatively.

Study on The Development of Basic Simulation Network for Operational Transient Analysis of The CANDU Power Plant

  • Park, Jong-Woon;Lim, Jae-cheon;Suh, Jae-seung;Chung, Ji-bum;Kim, Sung-Bae
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1995.10a
    • /
    • pp.423-428
    • /
    • 1995
  • Simulation models have been developed to predict the overall behavior of the CANDU plant systems during normal operational transients. For real time simulation purpose, simplified thermal hydraulic models are applied with appropriate system control logics, which include primary heat transport system solver with its component models and secondary side system models. The secondary side models are mainly used to provide boundary conditions for primary system calculation and to accomodate plant power control logics. Also, for the effective use of simulation package, hardware oriented basic simulation network has been established with appropriate graphic display system. Through validation with typical plant power maneuvering cases using proven plant performance analysis computer code, the present simulation package shows reasonable capability in the prediction of the dynamic behavior of plant variables during operational transients of CANDU plant, which means that this simulation tool can be utilized as a basic framework for full scope simulation network through further improvements.

  • PDF

Comparative study of constitutive relations implemented in RELAP5 and TRACE - Part I: Methodology & wall friction

  • Shin, Sung Gil;Lee, Jeong Ik
    • Nuclear Engineering and Technology
    • /
    • v.54 no.9
    • /
    • pp.3526-3539
    • /
    • 2022
  • Nuclear thermal-hydraulic system analysis codes have been developed to simulate nuclear reactor systems, which solve simplified governing equations by replacing source terms with constitutive relations for simulating entire reactor systems with low computational resources. For half a century, many efforts have been made for wider versatility and higher accuracy of system codes, but various factors can affect the code analysis results, and it was difficult to isolate these factors and interpret them individually. In this study, two system codes, RELAP5 and TRACE, which have many users and are highly reliable, are selected to analyze only the effects of constitutive relations. The influence of constitutive relations is analyzed using in-house platforms that replicate constitute relations of RELAP5 and TRACE equally to exclude factors that may affect analysis results, such as governing equation solvers and user effects. Among the various constitutive relations, the analysis is performed on the wall variables expected to have the most influence on the analysis results. Part 1 paper presents the methodology and wall friction model comparison, while Part 2 paper shows wall heat transfer comparison of the two selected codes.