• Title/Summary/Keyword: advanced driver assistance systems

Search Result 76, Processing Time 0.019 seconds

Trends on Personalization in Advanced Driver Assistance Systems (운전자 맞춤형 첨단 운전자 보조 시스템 기술 동향)

  • Kim, D.H.;Jang, B.T.;Shin, S.W.
    • Electronics and Telecommunications Trends
    • /
    • v.33 no.4
    • /
    • pp.61-69
    • /
    • 2018
  • Driver-specific technology in the automotive field has been commercialized for vehicle accessories, driver memory sheets, and side mirrors. In recent years, the demand for customized technology has expanded to include the user interface of an infotainment system (Infotainment System) and advanced driver support system (Advanced Driver Assistance System), and customized technologies for drivers have been studied. Therefore, this article describes the driver-tailored technology trends being studied in these fields, and examines the major research issues related to future driver-tailored technologies in the automotive field.

Study for Evaluation Standard of Longitudinal Active Safety System (종방향 능동안전장치의 평가기준 연구)

  • Jang, Hyunik;Yong, Boojoong;Cho, Seongwoo;Choi, Inseong;Min, Kyongchan;Kim, Gyuhyun
    • Journal of Auto-vehicle Safety Association
    • /
    • v.4 no.1
    • /
    • pp.12-17
    • /
    • 2012
  • ADAS(Advanced Driver Assistance System) which is developed for alleviating driver's load has become improved with extending it's role. Previously, ADAS offered simple function just to make driver's convenience. However, nowadays ADAS also acts as Active Safety system which is made to release and/or prevent accidents. Longitudinal control system, as one of major parts of Active Safety System, is assessed as doing direct effect on avoiding accidents. Therefore, many countries such as Europe and America has pushed longitudinal control system as a government-wide project. In this paper, it covers the result of evaluation system and vehicle evaluation for development study in FCW, ACC and AEB.

Diagonally-reinforced Lane Detection Scheme for High-performance Advanced Driver Assistance Systems

  • Park, Mingu;Yoo, Kyoungho;Park, Yunho;Lee, Youngjoo
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.17 no.1
    • /
    • pp.79-85
    • /
    • 2017
  • In this paper, several optimizations are proposed to enhance the quality of lane detection algorithms in automotive applications. Considering the diagonal directions of lanes, the proposed limited Hough transform newly introduces image-splitting and angle-limiting schemes that relax the number of possible angles at the line voting process. In addition, unnecessary edges along the horizontal and vertical directions are pre-defined and removed during the edge detection procedures, increasing the detecting accuracy remarkably. Simulation results shows that the proposed lane recognition algorithm achieves an accuracy of more than 90% and a computing speed of 92 frame/sec, which are superior to the results from the previous algorithms.

Lane Detection and Tracking Using Classification in Image Sequences

  • Lim, Sungsoo;Lee, Daeho;Park, Youngtae
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.12
    • /
    • pp.4489-4501
    • /
    • 2014
  • We propose a novel lane detection method based on classification in image sequences. Both structural and statistical features of the extracted bright shape are applied to the neural network for finding correct lane marks. The features used in this paper are shown to have strong discriminating power to locate correct traffic lanes. The traffic lanes detected in the current frame is also used to estimate the traffic lane if the lane detection fails in the next frame. The proposed method is fast enough to apply for real-time systems; the average processing time is less than 2msec. Also the scheme of the local illumination compensation allows robust lane detection at nighttime. Therefore, this method can be widely used in intelligence transportation systems such as driver assistance, lane change assistance, lane departure warning and autonomous vehicles.

Performance Evaluation of Lane Keeping Assistance System (도로주행환경을 고려한 차선유지지원장치 성능 평가)

  • Woo, Hyungu;Yong, Boojoong;Kim, Kyungjin
    • Journal of Auto-vehicle Safety Association
    • /
    • v.6 no.2
    • /
    • pp.29-35
    • /
    • 2014
  • Lane Keeping Assistance System(LKAS) is a kind of Advanced Driver Assistance Systems(ADAS) which are developed to automate/ adapt/ enhance vehicle systems for safety and better driving. The main system function of LKAS is to support the driver in keeping the vehicle within the current lane. LKAS acquires information on the position of the vehicle within the lane and, when required, sends commands to actuators to influence the lateral movement of the vehicle. Recently, the vehicles equipped with LKAS are commercially available in a few vehicle-advanced countries and the installation of LKAS increases for safety enhancement. The test procedures for LKAS evaluations are being discussed and developed in international committees such as ISO(the International Organization for Standardization). In Korea, the evaluations of LKAS for vehicle safety are planned to be introduced in 2016 KNCAP(Korean New Car Assessment Program). Therefore, the test procedures of LKAS suitable for domestic road and traffic conditions, which accommodate international standards, should be developed. In this paper, some bullet points of the test procedures for LKAS are discussed by extensive researches of previous documents and reports, which are released in public in regard to lateral test procedures including LKAS and Lane Departure Warning System(LDWS). Later, it can be helpful to make a draft considering domestic traffic situations for test procedures of LKAS.

A study on Korean drivers' acceptance and traffic sign conditions assessment for Speed Assistance Systems (속도제한 지원장치에 대한 운전자 인식도 및 도로환경 분석)

  • Lee, Hwa Soo;Cho, Jae Ho;Yim, Jong Hyun;Lee, Hong Guk;Chang, Kyung Jin;Yoo, Song Min
    • Journal of Auto-vehicle Safety Association
    • /
    • v.7 no.3
    • /
    • pp.30-34
    • /
    • 2015
  • This study examined the Korean drivers' acceptance of SAS(Speed Assistance systems) and traffic sign conditions in Korea roads for SLIF(Speed Limit Information Function) that is a part of SAS. Exceeding the speed limit is a factor in the severity of many road accidents and SAS would help the driver to observe a speed limit by warning and/or effectively limiting the speed of the vehicle. SAS are in the initial phase in Korea, Korean drivers could not be familiar with automatical speed limiting during driving, SAS interface design would be considered to be more readily acceptable to the public. And advanced SAS have been introduced onto the market which are able to inform the driver of the current speed limit based on camera and/or digital maps based SLIF. These systems are based on external data using sensors, so environmental conditions are an important factor which could cause malfunction of SLIF functions.

A Study on Design and Implementation of Driver's Blind Spot Assist System Using CNN Technique (CNN 기법을 활용한 운전자 시선 사각지대 보조 시스템 설계 및 구현 연구)

  • Lim, Seung-Cheol;Go, Jae-Seung
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.20 no.2
    • /
    • pp.149-155
    • /
    • 2020
  • The Korea Highway Traffic Authority provides statistics that analyze the causes of traffic accidents that occurred since 2015 using the Traffic Accident Analysis System (TAAS). it was reported Through TAAS that the driver's forward carelessness was the main cause of traffic accidents in 2018. As statistics on the cause of traffic accidents, 51.2 percent used mobile phones and watched DMB while driving, 14 percent did not secure safe distance, and 3.6 percent violated their duty to protect pedestrians, representing a total of 68.8 percent. In this paper, we propose a system that has improved the advanced driver assistance system ADAS (Advanced Driver Assistance Systems) by utilizing CNN (Convolutional Neural Network) among the algorithms of Deep Learning. The proposed system learns a model that classifies the movement of the driver's face and eyes using Conv2D techniques which are mainly used for Image processing, while recognizing and detecting objects around the vehicle with cameras attached to the front of the vehicle to recognize the driving environment. Then, using the learned visual steering model and driving environment data, the hazard is classified and detected in three stages, depending on the driver's view and driving environment to assist the driver with the forward and blind spots.

Proactive Autonomous Emergency Braking System for the Elderly Driver (고령운전자를 위한 자동긴급제동시스템 기술 개발)

  • Donghoon Shin
    • Journal of Auto-vehicle Safety Association
    • /
    • v.16 no.2
    • /
    • pp.14-19
    • /
    • 2024
  • This paper describes autonomous emergency braking systems (AEB) for elderly drivers designed to consider their driving characteristics. With aging, perception-reaction time, and decision-making time increase accordingly. Without being aware of these performance degradations, however, changes in driving patterns due to increased alertness while driving lead to vehicle crashes. Therefore, it is necessary to develop an autonomous emergency braking system by incorporating the characteristics of the elderly driver. In order to enhance the driver acceptance of older people, perception-reaction time, alertness, and ride comfort need to be considered for conventional autonomous emergency braking systems (C-AEB). Proactive AEB(P-AEB) algorithm has been proposed to reflect human factor of elderly driver above. The performance of the proposed algorithm has been evaluated through MATLAB simulink simulation studies. It has been shown from the computer simulations that the proposed P-AEB algorithm enhances the driver acceptance of older people by improving ride comfort while ensuring safety of vehicle.

Realtime Robust Curved Lane Detection Algorithm using Gaussian Mixture Model (가우시안 혼합모델을 이용한 강인한 실시간 곡선차선 검출 알고리즘)

  • Jang, Chanhee;Lee, Sunju;Choi, Changbeom;Kim, Young-Keun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.1
    • /
    • pp.1-7
    • /
    • 2016
  • ADAS (Advanced Driver Assistance Systems) requires not only real-time robust lane detection, both straight and curved, but also predicting upcoming steering direction by detecting the curvature of lanes. In this paper, a curvature lane detection algorithm is proposed to enhance the accuracy and detection rate based on using inverse perspective images and Gaussian Mixture Model (GMM) to segment the lanes from the background under various illumination condition. To increase the speed and accuracy of the lane detection, this paper used template matching, RANSAC and proposed post processing method. Through experiments, it is validated that the proposed algorithm can detect both straight and curved lanes as well as predicting the upcoming direction with 92.95% of detection accuracy and 50fps speed.

Advanced Navigation System using Soft-Computing (소프트 컴퓨팅을 이용한 진보된 네비게이션 시스템)

  • Ju, Yeong-Jin;Choe, U-Gyeong;Kim, Seong-Hyeon;Jun, Hong-Tae
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2006.11a
    • /
    • pp.87-90
    • /
    • 2006
  • 생활의 일부라 할 수 있는 교통시스템은 도시화, 산업화가 진행됨에 따라 더욱 복잡해지고 있다. 이를 보완하기 위해 내비게이션, 텔레메틱스 와 같은 다양한 보조 수단이 개발되고 있다. 하지만 이러한 운전자 보조 시스템은 개별화된 특성을 반영하지 않으며, 가장 일반적인 경우에 치중되어 있다. 본 논문에서는 개별화되고 사용자 중심적인 운전자 보조 시스템을 제안하며, 어떠한 정보가 이에 활용될 수 있는지를 고찰해 보았다. 또한 이런 정보를 해결하기 위한 소프트 컴퓨팅 기법을 제안하고자 한다.

  • PDF