• Title/Summary/Keyword: advanced driver assistance system

Search Result 99, Processing Time 0.024 seconds

Real-time FCWS implementation using CPU-FPGA architecture (CPU-FPGA 구조를 이용한 실시간 FCWS 구현)

  • Han, Sungwoo;Jeong, Yongjin
    • Journal of IKEEE
    • /
    • v.21 no.4
    • /
    • pp.358-367
    • /
    • 2017
  • Advanced Driver Assistance Systems(ADAS), such as Front Collision Warning System (FCWS) are currently being developed. FCWS require high processing speed because it must operate in real time while driving. In addition, a low-power system is required to operate in an automobile embedded system. In this paper, FCWS is implemented in CPU-FPGA architecture in embedded system to enable real-time processing. The lane detection enabled the use of the Inverse Transform Perspective (IPM) and sliding window methods to operate at fast speed. To detect the vehicle, a Convolutional Neural Network (CNN) with high recognition rate and accelerated by parallel processing in FPGA is used. The proposed architecture was verified using Intel FPGA Cyclone V SoC(System on Chip) with ARM-Core A9 which operates in low power and on-board FPGA. The performance of FCWS in HD resolution is 44FPS, which is real time, and energy efficiency is about 3.33 times higher than that of high performance PC enviroment.

Spatiotemporal Traffic Density Estimation Based on Low Frequency ADAS Probe Data on Freeway (표본 ADAS 차두거리 기반 연속류 시공간적 교통밀도 추정)

  • Lim, Donghyun;Ko, Eunjeong;Seo, Younghoon;Kim, Hyungjoo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.19 no.6
    • /
    • pp.208-221
    • /
    • 2020
  • The objective of this study is to estimate and analyze the traffic density of continuous flow using the trajectory of individual vehicles and the headway of sample probe vehicles-front vehicles obtained from ADAS (Advanced Driver Assitance System) installed in sample probe vehicles. In the past, traffic density of continuous traffic flow was mainly estimated by processing data such as traffic volume, speed, and share collected from Vehicle Detection System, or by counting the number of vehicles directly using video information such as CCTV. This method showed the limitation of spatial limitations in estimating traffic density, and low reliability of estimation in the event of traffic congestion. To overcome the limitations of prior research, In this study, individual vehicle trajectory data and vehicle headway information collected from ADAS are used to detect the space on the road and to estimate the spatiotemporal traffic density using the Generalized Density formula. As a result, an analysis of the accuracy of the traffic density estimates according to the sampling rate of ADAS vehicles showed that the expected sampling rate of 30% was approximately 90% consistent with the actual traffic density. This study contribute to efficient traffic operation management by estimating reliable traffic density in road situations where ADAS and autonomous vehicles are mixed.

Estimating a Range of Lane Departure Allowance based on Road Alignment in an Autonomous Driving Vehicle (자율주행 차량의 도로 평면선형 기반 차로이탈 허용 범위 산정)

  • Kim, Youngmin;Kim, Hyoungsoo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.15 no.4
    • /
    • pp.81-90
    • /
    • 2016
  • As an autonomous driving vehicle (AV) need to cope with external road conditions by itself, its perception performance for road environment should be better than that of a human driver. A vision sensor, one of AV sensors, performs lane detection function to percept road environment for performing safe vehicle steering, which relates to define vehicle heading and lane departure prevention. Performance standards for a vision sensor in an ADAS(Advanced Driver Assistance System) focus on the function of 'driver assistance', not on the perception of 'independent situation'. So the performance requirements for a vision sensor in AV may different from those in an ADAS. In assuming that an AV keep previous steering due to lane detection failure, this study calculated lane departure distances between the AV location following curved road alignment and the other one driving to the straight in a curved section. We analysed lane departure distance and time with respect to the allowance of lane detection malfunction of an AV vision sensor. With the results, we found that an AV would encounter a critical lane departure situation if a vision sensor loses lane detection over 1 second. Therefore, it is concluded that the performance standards for an AV should contain more severe lane departure situations than those of an ADAS.

Study on Fatality Risk of Older Driver and Traffic Accident Cost (고령운전자 연령구간별 사망사고 발생위험도와 사고비용 분석 연구)

  • Choi, Jaesung
    • Journal of the Korean Society of Safety
    • /
    • v.33 no.4
    • /
    • pp.111-118
    • /
    • 2018
  • Korea is facing a surge in the aging population, showing that population aged 65 and above will be accounted for 42.5% of the total population in 2065 with the emphasis on the over-80 population consisting of 19.2%. In response to this abrupt change in population structure, the number of traffic fatality accident referring to older driver as aged 65+ years had been increasing from 605 fatalities in 2011 to 815 fatalities in 2015 resulting in increases in 34.7% in oppose to happening to decreases in 17.2% about non-older driver. With Logit analysis based on Newton-Raphson algorithm utilizing older driver's traffic fatality data for the 2011-2015 years, it was found that the likelihood of an accident resulting in a fatality for super older driver aged 80 years and above considerably increased compared to other older driver with aging classification: 2.24 times for violation of traffic lane, 2.04 times for violation of U-turn, 1.48 times for violation of safety distance, 1.35 times for violation of obstacle of passing; also average annual increase of traffic accident cost related to super older driver was fairly increased rather than other older driver groups. Hence, this study proposes that improving and amending transport safety system and Road Traffic Act for super older driver needs to be urgently in action about license management, safe driving education, etc. when considering the increase of over-80 population in the near future. Also, implementing a social agreement with all ages and social groups to apply with advanced driver assistance system for older driver groups will be able to become a critical factor to enhance safe driving over the face of the country.

A Study of Aggressive Driver Detection Combining Machine Learning Model and Questionnaire Approaches (기계학습 모델과 설문결과를 융합한 공격적 성향 운전자 탐색 연구)

  • Park, Kwi Woo;Park, Chansik
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.7 no.3
    • /
    • pp.361-370
    • /
    • 2017
  • In this paper, correlation analysis was performed between questionnaire and machine learning based aggressive tendency measurements. this study is part of a aggressive driver detection using machine learning and questionnaire. To collect two types tendency from questionnaire and measurements system, we constructed experiments environments and acquired the data from 30 drivers. In experiment, the machine learning based aggressive tendency measurements system was designed using a driver behavior detection model. And the model was constructed using accelerate and brake position data and hidden markov model method through supervised learning. We performed a correlation analysis between two types tendency using Pearson method. The result was represented to high correlation. The results will be utilize for fusing questionnaire and machine learning. Furthermore, It is verified that the machine learning based aggressive tendency is unique to each driver. The aggressive tendency of driver will be utilized as measurements for advanced driver assistance system such as attention assist, driver identification and anti-theft system.

자동차용 정밀 측위 기술 동향

  • Jeong, Jae-Seung;Min, Jeong-Dong
    • Information and Communications Magazine
    • /
    • v.32 no.8
    • /
    • pp.38-44
    • /
    • 2015
  • 본고에서는 자동차의 자율주행이라는 최종의 목표를 위해 필요한 여러 가지 필수 기술 중 하나라고 할 수 있는 자동차의 자기 위치 인식을 위한 측위 기술에 대해 소개하고 그와 관련된 여러 연구 개발 동향을 살펴보고자 한다. 또한, 지능형 운전보조 시스템(ADAS, Advanced Driver Assistance System)에서 필수적인 고정밀 전자 지도(High Precision Map)가 자동차의 자기 위치 인식 정확도 향상에 어떤 방법으로 활용되는 지에 대해서도 알아 보고자 한다.

A Study on the Accident Reconstruction Simulation about AEBS of ADAS Vehicle using Prescan (Prescan을 활용한 ADAS 차량의 AEBS에 대한 사고 재현 시뮬레이션 연구)

  • Jonghyuk Kim;Jaehyeong Lee;Songhui Kim;Jihun Choi;Woojeong Jeon
    • Journal of Auto-vehicle Safety Association
    • /
    • v.15 no.4
    • /
    • pp.23-31
    • /
    • 2023
  • In recent years, the technology for autonomous driving has been advancing rapidly, ADAS (Advanced Driver Assistance System) functions, which improve driver convenience and safety performance, are mostly equipped in recently released vehicles and range from level 0 to level 2 in autonomous driving technology. Among the various functions of ADAS, AEBS (Autonomous Emergency Braking System), which analyzes traffic accidents, is the most closely related to the vehicle's braking. This study developed a simulation technique for reproducing accidents related to AEBS based on real vehicle experimental data, and it was applied to the analysis of actual ADAS vehicle accidents to identify the causes of accidents.

HSV Color Model Based Front Vehicle Extraction and Lane Detection using Shadow Information (그림자 정보를 이용한 HSV 컬러 모델 기반의 전방 차량 검출 및 차선 정보 검출)

  • 한상훈;조형제
    • Journal of Korea Multimedia Society
    • /
    • v.5 no.2
    • /
    • pp.176-190
    • /
    • 2002
  • According as vehicles increases, system such as Advanced Drivers Assistance System(ADAS ) to inform forward situation to driver is required. In this paper, we proposes method to detect forward vehicles and lane from sequential color images by basis process to inform forward situation to driver. We detect a front vehicle using that shadow area exists on part under vehicles and that road area occupies many parts even if road traffic is confused. We detect lane information using that lane part is white order by reverse characteristic of shadow area. This method shows good result in case road is confused or there is direction indication to road. HSV color space is selected for color modeling. This method uses saturation component and value component in HSV color model to detect vehicles and lane. It uses statistics features of HSV component and position to know whether detected vehicles area is vehicles such as vehicles previous frame. To verify the effects of the proposed method, we capture the road images with notebook and CCD camera for PC and Present the results such as processing time, accuracy and vehicles detection against the images.

  • PDF

Personal Driving Style based ADAS Customization using Machine Learning for Public Driving Safety

  • Giyoung Hwang;Dongjun Jung;Yunyeong Goh;Jong-Moon Chung
    • Journal of Internet Computing and Services
    • /
    • v.24 no.1
    • /
    • pp.39-47
    • /
    • 2023
  • The development of autonomous driving and Advanced Driver Assistance System (ADAS) technology has grown rapidly in recent years. As most traffic accidents occur due to human error, self-driving vehicles can drastically reduce the number of accidents and crashes that occur on the roads today. Obviously, technical advancements in autonomous driving can lead to improved public driving safety. However, due to the current limitations in technology and lack of public trust in self-driving cars (and drones), the actual use of Autonomous Vehicles (AVs) is still significantly low. According to prior studies, people's acceptance of an AV is mainly determined by trust. It is proven that people still feel much more comfortable in personalized ADAS, designed with the way people drive. Based on such needs, a new attempt for a customized ADAS considering each driver's driving style is proposed in this paper. Each driver's behavior is divided into two categories: assertive and defensive. In this paper, a novel customized ADAS algorithm with high classification accuracy is designed, which divides each driver based on their driving style. Each driver's driving data is collected and simulated using CARLA, which is an open-source autonomous driving simulator. In addition, Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) machine learning algorithms are used to optimize the ADAS parameters. The proposed scheme results in a high classification accuracy of time series driving data. Furthermore, among the vast amount of CARLA-based feature data extracted from the drivers, distinguishable driving features are collected selectively using Support Vector Machine (SVM) technology by comparing the amount of influence on the classification of the two categories. Therefore, by extracting distinguishable features and eliminating outliers using SVM, the classification accuracy is significantly improved. Based on this classification, the ADAS sensors can be made more sensitive for the case of assertive drivers, enabling more advanced driving safety support. The proposed technology of this paper is especially important because currently, the state-of-the-art level of autonomous driving is at level 3 (based on the SAE International driving automation standards), which requires advanced functions that can assist drivers using ADAS technology.

A Study of Mobile Edge Computing System Architecture for Connected Car Media Services on Highway

  • Lee, Sangyub;Lee, Jaekyu;Cho, Hyeonjoong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.12
    • /
    • pp.5669-5684
    • /
    • 2018
  • The new mobile edge network architecture has been required for an increasing amount of traffic, quality requirements, advanced driver assistance system for autonomous driving and new cloud computing demands on highway. This article proposes a hierarchical cloud computing architecture to enhance performance by using adaptive data load distribution for buses that play the role of edge computing server. A vehicular dynamic cloud is based on wireless architecture including Wireless Local Area Network and Long Term Evolution Advanced communication is used for data transmission between moving buses and cars. The main advantages of the proposed architecture include both a reduction of data loading for top layer cloud server and effective data distribution on traffic jam highway where moving vehicles require video on demand (VOD) services from server. Through the description of real environment based on NS-2 network simulation, we conducted experiments to validate the proposed new architecture. Moreover, we show the feasibility and effectiveness for the connected car media service on highway.