• Title/Summary/Keyword: adsorptive

Search Result 240, Processing Time 0.03 seconds

Hydrogels with diffusion-facilitated porous network for improved adsorption performance

  • Pei, Yan-yan;Guo, Dong-mei;An, Qing-da;Xiao, Zuo-yi;Zhai, Shang-ru;Zhai, Bin
    • Korean Journal of Chemical Engineering
    • /
    • v.35 no.12
    • /
    • pp.2384-2393
    • /
    • 2018
  • Porous alginate-based hydrogel beads (porous ABH) have been prepared through a facile and sustainable template-assisted method using nano-calcium carbonate and nano-$CaCO_3$ as pore-directing agent for the efficient capture of methylene blue (MB). The materials were characterized by various techniques. The sorption capacities of ABH towards MB were compared with pure sodium alginate (ABH-1:0) in batch and fixed-bed column adsorption studies. The obtained adsorbent (ABH-1:3) has a higher BET surface area and a smaller average pore diameter. The maximum adsorption capacity of ABH-1:3 obtained from Langmuir model was as high as $1,426.0mg\;g^{-1}$. The kinetics strictly followed pseudo-second order rate equation and the adsorption reaction was effectively facilitated, approximately 50 minutes to achieve adsorption equilibrium, which was significantly shorter than that of ABH-1:0. The thermodynamic parameters revealed that the adsorption was spontaneous and exothermic. Thomas model fitted well with the breakthrough curves and could describe the dynamic behavior of the column. More significantly, the uptake capacity of ABH-1:3 was still higher than 75% of the maximum adsorption capacity even after ten cycles, indicating that this novel adsorbent can be a promising adsorptive material for removal of MB from aqueous solution under batch and continuous systems.

Modelling and packed bed column studies on adsorptive removal of phosphate from aqueous solutions by a mixture of ground burnt patties and red soil

  • Rout, Prangya R.;Dash, Rajesh R.;Bhunia, Puspendu
    • Advances in environmental research
    • /
    • v.3 no.3
    • /
    • pp.231-251
    • /
    • 2014
  • The present study examines the phosphate adsorption potential and behavior of mixture of Ground Burnt Patties (GBP), a solid waste generated from cooking fuel used in earthen stoves and Red Soil (RS), a natural substance in fixed bed column mode operation. The characterization of adsorbent was done by Proton Induced X-ray Emission (PIXE), and Proton Induced ${\gamma}$-ray Emission (PIGE) methods. The FTIR spectroscopy of spent adsorbent reveals the presence of absorbance peak at $1127cm^{-1}$ which appears due to P = O stretching, thus confirming phosphate adsorption. The effects of bed height (10, 15 and 20 cm), flow rate (2.5, 5 and 7.5 mL/min) and initial phosphate concentration (5 and 15 mg/L) on breakthrough curves were explored. Both the breakthrough and exhaustion time increased with increase in bed depth, decrease in flow rate and influent concentration. Thomas model, Yoon-Nelson model and Modified Dose Response model were used to fit the column adsorption data using nonlinear regression analysis while Bed Depth Service Time model followed linear regression analysis under different experimental condition to evaluate model parameters that are useful in scale up of the process. The values of correlation coefficient ($R^2$) and the Sum of Square Error (SSE) revealed the Modified Dose Response model as the best fitted model to the experimental data. The adsorbent mixture responded effectively to the desorption and reusability experiment. The results of this finding advocated that mixture of GBP and RS can be used as a low cost, highly efficient adsorbent for phosphate removal from aqueous solution.

Construction of Aquatic Environmental Database Near Wolsong Nuclear Power Plant (월성 원전 주변 수생 환경 자료 구축)

  • Suh, Kyung-Suk;Min, Byung-Il;Yang, Byung-Mo;Kim, Jiyoon;Park, Kihyun;Kim, Sora
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.17 no.2
    • /
    • pp.235-243
    • /
    • 2019
  • Radioactive materials are released into the air and deposited on the surface soil after a nuclear accident. Radionuclides deposited in soil are transported by precipitation to nearby environments and contaminate the surface water system. Basic data on surface watershed and soil erosion models have been collected and analyzed to evaluate the behavior of radionuclides deposited on surface soil after a nuclear accident. Data acquisition and analysis in aquatic environment were performed to investigate the physical characteristics and variation of biota in rivers and lakes of the Nakdong river area near the Wolsong nuclear power plant. For these purposes, a digital map, and hydrological, water quality and biota data were gathered and a systematic database (DB) was constructed in connection with them. Constructed aquatic DB will be supplied and used in surface watershed and soil erosion models for investigation of long-term movement of radionuclides in adsorptive form in surface soil. Finally, basic data and established models will be utilized for general radiological impact assessment in aquatic environment.

Evaluation of acetaldehyde removal performance of a hybrid adsorbent consisting of organic and inorganic materials (유무기 융복합 흡착제의 아세트알데하이드 제거 성능 평가)

  • Ahn, Hae Young;Lee, Yoon Kyoung;Song, JiHyeon
    • Journal of odor and indoor environment
    • /
    • v.17 no.4
    • /
    • pp.372-380
    • /
    • 2018
  • To abate the problem of odor from restaurants, a hybrid adsorbent consisting of organic and inorganic materials was developed and evaluated using acetaldehyde as a model compound was deveioped and evaluated. Powders of activated carbon, bentonite, and calcium hydroxide were mixed and calcinated to form adsorbent structure. The surface area of the hybrid adsorbent was smaller than that of high-quality activated carbon, but its microscopic image showed that contours and pores were developed on its surface. To determine its adsorption capacity, both batch isotherm and continuous flow column experiments were performed, and these results were compared with those using commercially available activated carbon. The isotherm tests showed that the hybrid adsorbent had a capacity 40 times higher than that of the activated carbon. In addition, the column experiments revealed that breakthrough time of the hybrid adsorbent was 2.5 times longer than that of the activated carbon. These experimental results were fitted to numerical simulations by using a homogeneous surface diffusion model (HSDM); the model estimated that the hybrid adsorbent might be able to remove acetaldehyde at a concentration of 40 ppm for a 5-month period. Since various odor compounds are commonly emitted as a mixture when meat is barbecued, it is necessary to conduct a series of experiments and HSDM simulations under various conditions to obtain design parameters for a full-scale device using the hybrid adsorbent.

Preparative separation of minor saponins from Panax notoginseng leaves using biotransformation, macroporous resins, and preparative high-performance liquid chromatography

  • Liu, Fang;Ma, Ni;Xia, Fang-Bo;Li, Peng;He, Chengwei;Wu, Zhenqiang;Wan, Jian-Bo
    • Journal of Ginseng Research
    • /
    • v.43 no.1
    • /
    • pp.105-115
    • /
    • 2019
  • Background: Ginsenosides with less sugar moieties may exhibit the better adsorptive capacity and more pharmacological activities. Methods: An efficient method for the separation of four minor saponins, including gypenoside XVII, notoginsenoside Fe, ginsenoside Rd2, and notoginsenoside Fd, from Panax notoginseng leaves (PNL) was established using biotransformation, macroporous resins, and subsequent preparative high-performance liquid chromatography. Results: The dried PNL powder was immersed in the distilled water at $50^{\circ}C$ for 30 min for converting the major saponins, ginsenosides Rb1, Rc, Rb2, and Rb3, to minor saponins, gypenoside XVII, notoginsenoside Fe, ginsenoside Rd2, and notoginsenoside Fd, respectively, by the enzymes present in PNL. The adsorption characteristics of these minor saponins on five types of macroporous resins, D-101, DA-201, DM-301, X-5, and S-8, were evaluated and compared. Among them, D-101 was selected due to the best adsorption and desorption properties. Under the optimized conditions, the fraction containing the four target saponins was separated by D-101 resin. Subsequently, the target minor saponins were individually separated and purified by preparative high-performance liquid chromatography with a reversed-phase column. Conclusion: Our study provides a simple and efficient method for the preparation of these four minor saponins from PNL, which will be potential for industrial applications.

Adsorption Calculation of Oxygen, Nitrogen and Argon in Carbon-Based Adsorbent with Randomly Etched Graphite Pores (무작위 에칭 흑연 기공을 가지는 탄소기반 흡착제에 의한 산소, 질소 및 아르곤의 흡착 계산)

  • Seo, Yang Gon
    • Clean Technology
    • /
    • v.24 no.4
    • /
    • pp.348-356
    • /
    • 2018
  • The adsorption equilibria of oxygen, nitrogen and argon on carbonaceous adsorbent with slit-shaped and randomly etched graphite (REG) pores were calculated by molecular simulation method. Reliable models of adsorbents and adsorbates for adsorption equilibria are important for the correct design of industrial adsorptive separation processes. At the smallest physical pore of $5.6{\AA}$, only oxygen molecules were accommodated at the center of the slit-shaped pore, and from $5.9{\AA}$ nitrogen and argon molecules could be accommodated in the pores. Slit pores showed higher adsorption capacity compared with REG pores with same averaged reenterance pore size due to dead volume and inaccessible volume in defected pores. And it was shown the adsorption capacities of oxygen and argon was same in larger pore size. From calculated adsorption isotherms at 298 K it showed that the adsorption capacity ratio of oxygen to nitrogen is increased as pressure is increased.

Assessment of Zeolite Soil Mixture as Adsorptive Fill Material at Industrial Zones (산업단지에서의 흡착 성토재로써 제올라이트 토양혼합물의 특성평가)

  • Kwon, Patrick Sun;Rahim, Shahrokhishahraki;Park, Jun Boum
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.39 no.1
    • /
    • pp.203-209
    • /
    • 2019
  • A number of industrial zones in South Korea were reported contaminated by heavy metals. Such contamination could cause severe damage to the subsurface environment including soil and groundwater. The treatment of zeolite mixing with soil at the bottom of such industrial zones might prevent, or at least reduce the damage of contamination by adsorption of the heavy metals from the leakage. However, such mixtures should maintain the proper bearing capacity as a foundation fill material from the geotechnical point of view at the same time. To investigate the effect of mixtures of zeolite with local soils for the adsorption of heavy metals (Zn, Pb) and sustainability of bearing capacity, adsorption isotherm tests and direct shear test with compaction tests were performed. Results showed that the mixing zeolite with local soils effectively reduces the spreading of the heavy metal contamination when maintaining its proper geotechnical properties as a fill material of industrial zones.

Adsorption characteristics of NH4-N by biochar derived from pine needles

  • Kang, Yun-Gu;Lee, Jun-Young;Chun, Jin-Hyuk;Lee, Jae-Han;Yun, Yeo-Uk;Oh, Taek-Keun
    • Korean Journal of Agricultural Science
    • /
    • v.48 no.3
    • /
    • pp.589-596
    • /
    • 2021
  • Nitrogen applied to soil is highly prone to leaching and volatilization leading to gaseous emissions of nitrous oxide (N2O) and ammonia (NH3) which are of great environmental concern. Usage of biochar to reduce the discharge of nitrogen to the environment has attracted much interest in the recent past. Biochar is produced by pyrolyzing various biomasses under oxygen-limited conditions. Biochar is a carbonized material with high adsorptive powers for not only plant nutrients but also heavy metals. The objective of this study was to investigate the adsorption characteristics of NH4-N onto biochar made from pine needles. The biochar was produced at various pyrolysis temperatures including 300, 400 and 500℃ and holding times of 30 and 120 minutes. The Langmuir isotherm was used to evaluate the adsorption test results. The chemical properties of the biochar varied with the pyrolysis conditions. In particular, the pH, EC and total carbon content increased with the increasing pyrolysis conditions. The rate of adsorption of NH4-N by the biochar decreased with the increasing pyrolysis conditions. Of these conditions, biochar that was pyrolyzed at 300℃ for 30 minutes showed the highest adsorption rate of approximately 0.071 mg·g-1. Thus, the use of biochar pyrolyzed at low temperatures with a short holding time can most efficiently reduce ammonia emissions from agricultural land.

Adsorption of uranium(VI), calcium(II), and samarium(III) ions on synthetic resin adsorbent with styrene hazardous materials (스타이렌 위험물을 포함한 합성수지 흡착제에 의한 U(VI), Ca(II), Sm(III) 이온들의 흡착)

  • Kim, Joon-Tae
    • Analytical Science and Technology
    • /
    • v.22 no.1
    • /
    • pp.92-100
    • /
    • 2009
  • Azacrown resins were synthesized by mixing 1-aza-12-crown-4 macrocyclic ligand into styrene (2th petroleum in 4th class hazardous materials) divinylbenzene (DVB) copolymer with crosslinkage of 1%, 2%, 5% and 10% by substitution reaction. The synthesis of these resins was confirmed by content of chlorine, element analysis, thermogravimetric analysis (TGA), surface area (BET), and IR-spectroscopy. The effects of pH, time, crosslinkage of resins and dielectric constant of solvent on adsorption of metal ions by resin adsorbent were investigated. Metal ions showed a great adsorption over pH 3 and adsorption equilibrium of metal ions was about two hours. In addition, adsorptive selectivity of metals on the resin in ethanol solvent was increased in the order of ${UO_2}^{2+}$ > $Ca^{2+}$ > $Sm^{3+}$ ion and adsorption of uranium ion was decreased with increase of crosslinkage such as 1%, 2%, 5% and 10% and was inversely proportional to the order of dielectric constant of solvents.

Adsorption of uranium(VI) ion on the nitrogen-donor macrocyclic synthetic resin adsorbent (질소-주게 거대고리 합성수지 흡착제에 의한 우라늄(VI) 이온의 흡착)

  • Kim, Joon-Tae
    • Analytical Science and Technology
    • /
    • v.21 no.2
    • /
    • pp.109-116
    • /
    • 2008
  • Resins were synthesized by mixing 1-aza-18-crown-6 macrocyclic ligand into styrene(dangerous matter) divinylbenzene(DVB) copolymer with crosslink of 1%, 2%, 6% and 12% by substitution reaction. The synthesis of these resins was confirmed by content of chlorine, elemental analysis, thermogravimetric analysis, electron microscopy, and IR. The effects of pH, time, crosslink of resins and dielectric constant of solvent on adsorption of uranium ion by resin adsorbent were investigated. Uranium ion showed a great adsorption above pH 3 and adsorption equilibrium of metal ions was established in about two hours. In addition, adsorptive selectivity of resin in ethanol solvent was $UO{_2}^{2+}$ > $Zn^{2+}$ > $Lu^{3+}$ ion and adsorption of uranium ion increased with the increase of the degree of crosslinking (1%~12%) and was inversely in proportional to the order of dielectric constant of solvents.