• Title/Summary/Keyword: adsorptive

Search Result 240, Processing Time 0.03 seconds

Availability Analysis on the Multi-Effect Distillation and Adsorptive Desalination Process (다중효용-흡착 방식 담수화 시스템의 가용도 분석)

  • Noh, Hyon-Jeong;Lee, Ho-Saeng;Ji, Ho;Kang, Kwan-Gu
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.24 no.6_2
    • /
    • pp.827-839
    • /
    • 2021
  • Due to climate change and population growth, water scarcity is getting worse all over the world. Among various methods for desalination of seawater, the Multi-Effect Adsorptive Desalination method, which combines the existing Multi-Effect Desalination method and the Adsorptive Desalination method and can produce high-concentration-high-concentration freshwater, is emerging. Because the Multi-Effect Adsorptive Desalination method combines the two different methods, the system becomes complicated and the possibility of failure increases. Therefore, in this study, availability analysis was performed on the Multi-Effect Adsorptive Desalination process. A total of four types of reliability block diagrams were presented, and availability analysis was conducted based on them. The first form of a reliability block diagram is configured in series without any redundancy. The availability of the reliability block diagram composed of the serial system was found to be lower than the required availability. In order to increase availability, the redundancy to pumps and boiler are added to system. As a result of availability analysis, it was confirmed that designing desalination systems with redundancy to pump meets the 93% availability, which is typically required availability for various plants.

Determination of Ultra Trace Levels of Copper in Whole Blood by Adsorptive Stripping Voltammetry

  • Attar, Tarik;Harek, Yahia;Larabi, Lahcen
    • Journal of the Korean Chemical Society
    • /
    • v.57 no.5
    • /
    • pp.568-573
    • /
    • 2013
  • A selective and sensitive method for simultaneous determination of copper in blood by adsorptive differential pulse cathodic stripping voltammetry is presented. The procedure involves an adsorptive accumulation of Cu(II)-ETSC (4- ethyl-3-thiosemicarbazide) on a hanging mercury drop electrode, followed by a stripping voltammetry measurement of reduction current of adsorbed complex at about -715 mV. The optimum conditions for the analysis of copper (II) ion are : pH 10.3, concentration of 4-ethyl-3-thiosemicarbazide $3.25{\times}10^{-6}$ M and an accumulation potential of -100 mV. The peak current is proportional to the concentration of copper over the range 0.003-125 ng/mL with a detection limit of 0.001 ng/mL and an accumulation time of 60 s. Moreover, with the use of the proposed method, there is a considerable improvement in the detection limit, the linear dynamic range and the deposition time, compared with the methods of adsorptive stripping voltammetry for the determination of copper. The developed method was validated by analysis of whole blood certified reference materials.

Adsorption of Organic Chemical by Coconut Activated Carbon treated with Zinc Salt (아연염으로 표면처리한 활성탄에 의한 수중 유기화합물의 흡착)

  • 김영규;한진수
    • Journal of environmental and Sanitary engineering
    • /
    • v.10 no.1
    • /
    • pp.132-141
    • /
    • 1995
  • The objectives of this study was to find the effect of zinc salt treated with coconut activated carbon and the effect of humic substance. The bottle- Point technique was used in determining the Freundlich isotherm equation. The adsorptive capacity of granular activated carbon was reduced when humic substance are present. Coconut activated carbon was coated with 0.0001 N zinc chloride decreased the BET surface area but increased the adsorptive capacity more than coconut activated carbon not coated with zinc chloride. The adsorptive capacity of TCE in coconut activated carbon coated with higher concentration of zinc chloride was reduced but increased in the solution containing humic substance when the coconut activated carbon was coated with 0.01 N- zinc chloride. The zinc salt coated with coconut activated carbon did not Increase the adsorptive velocity of coconut activated carbon.

  • PDF

Heavy Metal Removal of Acrylic Acid-grafted Bacterial Cellulose in Aqueous Solution (아크릴산으로 그라프트된 미생물셀룰로오스의 수용액 내 중금속 흡착거동)

  • Ahn, Yeong-Hee;Choi, Yong-Jin
    • Journal of Environmental Science International
    • /
    • v.23 no.8
    • /
    • pp.1419-1428
    • /
    • 2014
  • Electron beam-induced grafting polymerization was employed to prepare Acrylic acid-grafted bacterial cellulose (BC-g-AAc). BC-g-AAc as an adsorbent was applied to remove heavy metals (e.g., As, Pb, and Cd). This study examined followings; morphological change of surface, adsorptive behavior of BC-g-AAc, and interpretation of adsorptive kinetics. Specific surface areas of BC and BC-g-AAc were $0.9527m^2g^{-1}$ for BC and $0.2272m^2g^{-1}$ for BC-g-AAc, respectively as measured by BET nitrogen adsorption, revealing the morphological change of the surface of BC-g-AAc. Batch adsorption test was performed to investigate adsorptive behavior of BC-g-AAc in aqueous solution. The amounts of Pb and Cd adsorbed on BC-g-AAc were $69mg\;g^{-1}$ and $56mg\;g^{-1}$, respectively. However, As was not adsorbed on BC-g-AAc due to its neutral nature. Both the Benaissa model and the Kurniawan model were applied in the study to interpret adsorptive kinetics. From the value of correction coefficient ($R^2$), adsorptive kinetics of Pb and Cd were subjected to Kurniawan model referred to pseudo-second-order. Taken together, the results of this study show that BC-g-AAc has potential as a heavy metal (eg., Pb, Cd)-adsorbent made of an environmentally friendly material.

Clay adsorptive membranes for chromium removal from water

  • Kashaninia, Fatemeh;Rezaie, Hamid Reza;Sarpoolaky, Hossein
    • Membrane and Water Treatment
    • /
    • v.10 no.4
    • /
    • pp.259-264
    • /
    • 2019
  • Cost effective clay adsorptive microfiltration membranes were synthesized to remove Cr (III) from high polluted water. Raw and calcined bentonite were mixed in order to decrease the shrinkage and also increase the porosity; then, 20 wt% of carbonate was added and the samples, named B (without carbonate) and B-Ca20 (with 20 wt% calcium carbonate) were uniaxially pressed and after sufficient drying, fired at $1100^{\circ}C$ for 3 hours. Then, physical and mechanical properties of the samples, their phase analyses and microstructure and also their ability for Cr(III) removal from high polluted water (including 1000 ppm Cr (III) ions) were studied. Results showed that the addition of calcium carbonate lead the porosity to increase to 33.5% while contrary to organic pore formers like starch, due to the formation of wollastonite, the mechanical strength not only didn't collapse but also improved to 36.77 MPa. Besides, sample B-Ca20, due to the presence of wollastonite and anorthite, could remove 99.97% of Cr (III) ions. Hence, a very economic and cost effective combination of membrane filtration and adsorption technology was achieved for water treatment which made microfiltration membranes act even better than nanofiltration ones without using any adsorptive nano particles.

Development of Adsorptive Permeation Membrane (APM) and Process for Separation of $CO_2$ from gas mixtures (이산화탄소 분리를 위한 흡착투과막 및 공정 개발)

  • Yeom, Choong Kyun;Ahn, Hyo Sung;Kang, Kyeong Rok;Kim, Joo Yul;Han, Jin-Soo;Kwon, Keun-Oh
    • Membrane Journal
    • /
    • v.23 no.6
    • /
    • pp.409-417
    • /
    • 2013
  • Adsorptive permeation hollow fiber membrane (APM) has been developed for effectively separating $CO_2$ from gas mixture. Inside the APM, zeolite 13X particles were uniformly dispersed without covering their surfaces by a symmetric porous structure of polypropylene lattice. In this study, $CO_2/N_2$ mixture was used as a simulated gas mixture. Separation was achieved by adsorbing $CO_2$ on the zeolite particles in the APM and then permeating $N_2$ into permeate side in passing all the feed gas through the APM. Adsorptive permeation tests were carried out with a set of APM modules, and the adsorptive permeation performances of the modules were analyzed from the test results. After saturation of the adsorbent with $CO_2$, the APM was regenerated by desorption of $CO_2$ from it through vacuuming both inside of outside of the APM hollow fiber, and the regeneration process of the APM by vacuuming was discussed in terms of regeneration efficiency and energy consumption.

Determination of Fluoroquinolone Antibacterial Agents by Square Wave Adsorptive Stripping Voltammetry (네모파 흡착 벗김 전압전류법에 의한 플루오로퀴놀론 계 항생제의 검출)

  • Boo, Han-Kil;Song, Youn-Joo;Park, Se-Jin;Chung, Taek-Dong
    • Journal of the Korean Electrochemical Society
    • /
    • v.13 no.1
    • /
    • pp.63-69
    • /
    • 2010
  • Electrochemical behavior of fluoroquinolone antibacterial agents on carbon paste electrode (CPE) were investigated by cyclic voltammetry and square wave adsorptive stripping voltammetry. The fluoroquinolone antibacterial agents tested in this study were Enrofloxacin (ENR), Norfloxacin (NOR), Ciprofloxacin (CIP), Ofloxacin (OFL) and Levofloxacin (LEV). In acetate buffer at pH 4.5, the oxidation peak potentials of the fluoroquinolone antibacterial agents of ENR, NOR, CIP, OFL, and LEV were 0.952 V, 1.052 V, 1.055 V, 0.983 V, and 0.990 V (vs. Ag/AgCl), respectively. And their oxidation peak currents from square wave adsorptive stripping voltammograms are proportional to the concentration of each antibacterial agent over the range from $0.2\;{\mu}M$ to $1\;{\mu}M$.

Adsorption Removal of Odor Compounds (IBMP, IPMP) (이.취미물질(IBMP, IPMP)의 흡착제거)

  • 김은호;손희정;김영웅
    • Journal of environmental and Sanitary engineering
    • /
    • v.14 no.2
    • /
    • pp.18-24
    • /
    • 1999
  • The purpose of this study was carried out to estimate removal possibility of IBMP and IPMP causing odor in raw water. As a result of Freundlich isotherm. IBMP was superior to IPMP in adsorptive capacity. Adsorptive capacities of activated carbon were found to be in order of Lignite, Coconut shell, and Charcoal. These were well fitted with Freundlich isotherm. According to adsorption breakthrough tests for Lignite GAC, breakthrough time of IPMP and IBMP were 5.7hr and 5.5hr, respectively. Because adsorptive capacities of target material were very different with pore size distribution, it seemed that Lignite and Coconut shell based activated carbons were recommended in order to remove door compounds.

  • PDF

A Studyd on Adsorptive Properties of Activated Carbons Produced from Rice-Straw

  • Kim, Kun;Lee, Dong-Sun
    • Archives of Pharmacal Research
    • /
    • v.14 no.3
    • /
    • pp.249-254
    • /
    • 1991
  • Activated carbons from rice-straw can be used as an adsorbents for the purification of water were prepared and evaluated. The adsorptive capacities of activated carbons were measured by iodine, potassium permangante, phenol and metals. It was observed by electron microscope (SEM) and IR spectrum that organic components in the rice-straw and its carbonization product were disappeared. Slit-shaped and porousstructures were formed by activation. There was no relationship between temperature and adsorption of iodine but adsorption of potassium permanganate increased as temperature rose. The adsorption of the phenol was greater than 99%. The adsorption data of phenol at $25^\circ{C}$ obeyed the Freundlich's isotherm. Various metals except sodium were not removed by activated carbon.

  • PDF

INFLUENCE OF HUMIC SUBSTANCE (HS) ADSORPTIVE FRACTIONATION ON PYRENE PARTITIONING TO DISSOLVED AND MINERAL-ASSOCIATED HS

  • Hur, Jin;Schlautman, Mark A.
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.09a
    • /
    • pp.123-127
    • /
    • 2003
  • Changes in pyrene partitioning due to mineral surface adsorptive fractionation processes of humic substances (HS) were examined in model environmental systems. For purified Aldrich humic acid(PAHA), carbon-normalized pyrene binding coefficients ( $K_{oc}$ ) for the residual (i.e., nonadsorbed and dissolved) PAHA components were different from the original dissolved PAHA $K_{oc}$ , value prior to contact with mineral suspensions. A positive correlation between the extent of pyrene binding and weight-average molecular weight (M $W_{w}$) of residual PAHA components was observed, which appeared to be unaffected by the specific mineral adsorbents use and fractionation mechanisms. A similar positive correlation was not observed with the adsorbed PAHA components, suggesting that conformational changes occurred for the mineral-associated components upon adsorption. Nonlinear pyrene sorption to mineral-associated PAHA was observed, and the degree of nonlinearity is hypothesized to be dependent on adsorptive fractionation effects and/or structural rearrangement of the adsorbed PAHA components.s.

  • PDF