• Title/Summary/Keyword: adsorption layer

Search Result 405, Processing Time 0.024 seconds

중성자 산란을 이용한 생체물질의 구조 연구 : 단백질의 생체유사막의 흡착

  • Sin, Gwan-U;Rafailovich, M.H.;Sokolov, J.;Pernodet, N.;Satija, S.K.
    • 한국생물공학회:학술대회논문집
    • /
    • 2002.04a
    • /
    • pp.30-33
    • /
    • 2002
  • We have shown that it is possible to form a fibrilar network of fibronectin on a polyelectrolyte polymer film whose dimensions are similar to those reported on the extra cellular matrix. The fibronectin network was observed to form only when the charge density of the polymer was in excess of the natural charge density of the cell wall. Furthermore, the self-organized fibronectin layer was much thicker than the polymer film, indicating that long ranged interaction may playa key role in the assembly process. It is therefore important to understand the structure of the polymer layer/protein interface. Here we report on a neutron reflectivity study where we explore the structure of the polyelectrolyte layer, in this case sulfonated polystyrene (PSSx,), with varying degree of sulfonation (x<30%), as a function of sulfur content and counter ion concentration. These results are then correlated with systemic study of the adsorption and the multilayer formation of fibronectin as a function of incubation time for various sulfonation levels of $PSSx.^1$

  • PDF

Studies on Electrical Double Layer Capacitor Based on Mesoporous Activated Carbon

  • Meigen, Deng;Yihong, Feng;Bangchao, Yang
    • Carbon letters
    • /
    • v.6 no.2
    • /
    • pp.86-88
    • /
    • 2005
  • Mesoporous activated carbon (AC) was prepared from aged petroleum coke through chemical activation. The AC has a specific surface area of 1733 $m^2/g$ and a mean pore diameter of 2.37 nm. The volume fraction of 2 to 4nm pores is 56.74%. At a current density of 10 mA/$cm^2$, a specific capacitance of 240 F/g is achieved representing the use factor of the surface area of 69.2%. And the electrical double layer capacitor (EDLC) based on the AC shows an excellent power performance. This result suggests that the presence of high fraction of mesopores can effectively increase the adsorption efficiency of the specific surface area of the AC and enhance the power performance of EDLC based on the efficient surface area of the AC.

  • PDF

The effect of plamsa treatment on superconformal copper gap-fill

  • Mun, Hak-Gi;Kim, Seon-Il;Park, Yeong-Rok;Lee, Nae-Eung
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.249-249
    • /
    • 2010
  • The effect of forming a passivation layer was investigated in superconformal Cu gap-filling of the nano-scale trench with atomic-layer deposited (ALD)-Ru glue layer. It was discovered that the nucleation and growth of Cu during metal-organic chemical vapor deposition (MOCVD) were affected by hydrogen plasma treatments. Specifically, as the plasma pretreatment time increased, Cu nucleation was suppressed proportionally. XPS and Thermal Desorption Spectroscopy indicated that hydrogen atoms passivate the Ru surface, which leads to suppression of Cu nucleation owing to prevention of adsorption of Cu precursor molecules. For gap-fill property, sub 60-nm ALD Ru trenches without the plasma pretreatment was blocked by overgrown Cu after the Cu deposition. With the plasma pretreatment, superconformal gap filling of the nano-scale trenches was achieved due to the suppression of Cu nucleation near the entrances of the trenches. Even the plasma pretreatment with bottom bias leads to the superconformal gap-filling.

  • PDF

XPS Studies of Oxygen Adsorption on Polycrystalline Nickel Surface

  • Lee, Soon-Bo;Boo, Jin-Hyo;Ahn, Woon-Sun
    • Bulletin of the Korean Chemical Society
    • /
    • v.8 no.5
    • /
    • pp.358-362
    • /
    • 1987
  • The interaction of oxygen with polycrystalline nickel surface has been studied by investigating the X-ray photoelectron spectra of O 1s, Ni $2p_{3/2}$, and their valence band electrons. By comparing the oxygen exposure of this work with the reported results of LEED, AES, and work function measurements, it is found that the atomic oxygen, adsorbed dissociatively in the initial stage of exposure, is responsible for a p(2 ${\times}$ 2) structure and a subsequent c(2 ${\times}$ 2) structure on the Ni(100) surface. This dissociatively adsorbed oxygen species forms surface NiO layer subsequently on further oxygen exposure. The NiO layer is more easily formed with the increasing temperature. Non-stoichiometric oxygen species is also found to accompany the NiO layer. It appears prior to the formation of bulk NiO at all of the temperatures of this work except at 523K.

Effect of Membrane Materials on Membrane Fouling and Membrane Washing (막의 재질에 따른 막오염 특성 및 물리·화학적 세척의 영향)

  • Shim, Hyun-Sool;Jung, Chul-Woo;Son, Hee-Jong;Sohn, In-Shik
    • Korean Chemical Engineering Research
    • /
    • v.45 no.5
    • /
    • pp.500-505
    • /
    • 2007
  • The objectives of this research were to (1) identify the membrane fouling potential due to different fractions of NOM (2) correlate the physicochemical properties of NOM and membranes with the adsorption of humic substances on membrane (4) find out the effect of membrane physical and chemical washing according to membrane material. The static adsorption test and adsorption test showed that hydrophobic organics adsorbed much more quickly than hydrophilic organics. In case of the effect of membrane properties on the adsorption of organic fractions, the adsorption rate ratio(a) of hydrophobic membrane (0.016, 0.077) was greater than that of hydrophilic membrane (0.010, 0.033) regardless of the kind of organic fractions. This suggests that the UF membrane fouling were occurred mainly by internal pore size decreasing due to adsorption of organic into pore surface for hydrophobic membrane, and by sieving of organics and forming a gel layer on the membrane surface for hydrophilic membrane. In conclusion, the decrease in the pore volume, which was caused by the organic adsorption into the internal pore, was greater with the hydrophobic membrane than with the hydrophilic membrane. In case of the effect of membrane properties on permeate flux, the rate of flux decline for the hydrophobic membrane was significantly greater than that for the hydrophilic membrane.

Thermodynamic Analysis of Phenol Adsorption by Powdered Activated Carbon (활성탄에 의한 페놀 흡착의 열역학적 연구)

  • Kim, Hwanik;Lee, Myoung-Eun;Kang, Seoktae;Chung, Jae-Woo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.3
    • /
    • pp.220-225
    • /
    • 2013
  • The adsorption characteristics of phenol by the powdered activated carbon (PAC) were investigated by series of batch experiments. The pseudo-second-order model described the adsorption kinetics adequately with correlation coefficients over 0.999, indicating chemical adsorption as the rate-limiting step. The kinetic rate constants were from 0.55 to 19.81 mg $mg^{-1}min^{-1}$. The adsorption isotherm followed the Langmuir isotherm, indicating the homogeneous mono-layer adsorption onto the surface of the adsorbent. The values of activation energy, enthalpy and entropy were 17.44 kJ $mol^{-1}$, -8.26 kJ $mol^{-1}$ and -18.94 J $mol^{-1}K^{-1}$, respectively. The Gibbs free energy was in the range of -2.89~-2.14 kJ $mol^{-1}$. The results show that the phenol adsorption is physical, spontaneous and exothermic reaction.

Interaction Experiment on Chloride Ion Adsorption Behavior of C-S-H Phases (C-S-H 상의 염소이온 흡착 메커니즘 규명을 위한 반응 작용 실험)

  • Yoon, In-Seok
    • Journal of the Korea Concrete Institute
    • /
    • v.29 no.1
    • /
    • pp.65-75
    • /
    • 2017
  • C-S-H phase is the most abundant reaction product, occupying about 50~60% of cement paste volume. The phase is also responsible for most of engineering properties of cement paste. This is not because it is intrinsically strong or stable, but because it forms a continuous layer that binds together the original cement particles into a cohesive whole. The binding ability of C-S-H phase arises from its nanometer-level structure. In terms of chloride penetration in concrete, C-S-H phase is known to adsorb chloride ions, however, its mechanism is very complicated and still not clear. The purpose of this study is to examine the interaction between chloride ions and C-S-H phase with various Ca/Si ratios and identify the adsorption mechanism. C-S-H phase can absorb chloride ions with 3 steps. In the C-S-H phase with low Ca/Si ratios, momentary physical adsorption could not be expected. Physical adsorption is strongly dependent on electro-kinetic interaction between surface area of C-S-H phase and chloride ions. For C-S-H phase with high Ca/Si ratio, electrical kinetic interaction was strongly activated and the amount of surface complexation increased. However, chemical adsorption could not be activated for C-S-H phase with high Ca/Si ratio. The reason can be explained in such a speculation that chloride ions cannot be penetrated and adsorbed chemically. Thus, the maximum chloride adsorption capacity was obtained from the C-S-H phase with a 1.50 Ca/Si ratio.

Total Phosphorus Removal Rate of a Subsurface-Flow Wetland System Constructed on Floodplain During Its Initial Operation Stage (고수부지에 조성한 수질정화 여과습지의 초기운영단계 총인 제거)

  • Yang, Hongmo
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.6 no.6
    • /
    • pp.49-55
    • /
    • 2003
  • Total phosphorous removal rate was examined of a subsurface-flow treatment wetland system which was constructed on floodplain in the down reach of the Kwangju Stream in Korea from May to June 2001. Its dimensions were 29 meter in length, 9 meter in width and 0.65 meter in depth. A bottom layer of 45 cm in depth was filled with crushed granite with about 15~30 mm in diameter and a middle layer of 10 cm in depth had pea pebbles with about 10 mm in diameter. An upper layer of 5 cm in depth contained course sand. Reeds(Phragmites australis) were transplanted on the surface of the system. They were dug out of natural wetlands and stems were cut at about 40 cm height from their bottom ends. Water of the Kwangju Stream flowed from a submerged dam into it via a pipe by gravity flow and treated effluent was funneled back into the Stream. The number of reed stems increased from 80 stems/$m^2$ in July 2001 to 136 stems/$m^2$ in September 2001. The hight of stems was 44.2 cm in July 2001 and 75.3 cm in September 2001. The establishment of reeds at early operating stage of the system was good. Volume and water quality of inflow and outflow were investigated from July 2001 through December 2001. The average inflow was 40 $m^3$/day and hydraulic detention time was about 1.5 days. The concentration of total phosphorous n influent and effluent was 0.83 and 0.33 mg/L, respectively. The removal rate of total phosphorous averaged about 60%. The removal efficiency was slightly higher, compared with that of subsurface-flow wetlands operating in North America, whose retention rate of total phosphorous was reported to be about 56%. The good abatement rate could be attributed to sedimentation of particle phosphorous in pores of the media and adsorption of phosphorous to the biofilm developed on the surface of them. Increase of standing density of reeds within a few years will develop root zones which may lead to increment in the phosphorous retention rate.

Effect of Hydroxypropyl Cellulose Treatment for Surface Stabilization of Waterlogged Wood of Wan-do Shipwreck Impregnated with Polyethylene Glycol (폴리에틸렌글리콜(PEG) 함침처리한 완도선 목재의 표면 안정화를 위한 하이드록시프로필 셀룰로오스(HPC) 처리효과)

  • Kim, Eung Ho;Han, Gyu Seong
    • Journal of Conservation Science
    • /
    • v.32 no.2
    • /
    • pp.155-165
    • /
    • 2016
  • This study aimed at verifying the effect of hydroxypropyl cellulose(HPC) treatment on polyethylene glycol(PEG)-treated waterlogged wood for surface stabilizing. This research investigated macroscopic and microscopic appearance, color change, weight change, and dimensional change. And effect of HPC was verified through variance analysis (ANOVA) and least significant difference test(LSD). HPC formed thin layer on the surface of wood specimen, and blocked the pore of tracheid and the gap between the crack. Specimens without deterioration showed no invisible change except HPC 1,000,000 treatment group. Whitening was appeared at the sound surface of HPC 1,000,000 treated wood. Specimens with deterioration showed a little color difference change by external moisture adsorption. Thin layer of HPC on the surface of wood specimen was maintained after the deterioration, and this HPC layer significantly suppressed the weight and dimensional change by moisture adsorption.

Effect of Operating Conditions on the Fouling of UF Membrane in Treatment of Dissolved Organic Matter (UF를 이용한 용존성 유기물질 제거시 운전조건이 파울링에 미치는 영향)

  • Kwon, Eun-Mi;Yu, Myong-Jin
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.7
    • /
    • pp.1183-1191
    • /
    • 2000
  • Operating conditions for reduction of membrane fouling in treatment of dissolved organic matter by UF membrane process were investigated by pilot-scale plant using various operating conditions. As inlet pressure increased, increament of transmembrane pressure and flux decline were faster. The reason was due to the increase in adsorption of dissolved organic matter and the development of cake layer compression on the membrane surface. When efficient pressure (the difference of pressure between backwash and transmembrane pressures) was high, small amount of pollutant was retained on the membrane surface. When backwash was frequently conducted, low concentration of pollutant was maintained in recycling water. Therefore, backwash could be efficiently conducted with high efficient pressure and high frequency. Fouling rate was correlated with backwash and inlet pressures, recovery rate and cumulative permeated volume. Among the operating parameters backwash pressure was most closely related to fouling rate and inlet pressure was next to backwash pressure. It seems that the fouling was strongly related to pressure which leads to the cake layer compression and adsorption of dissolved organic matter.

  • PDF