• Title/Summary/Keyword: adsorption characteristics

Search Result 1,436, Processing Time 0.025 seconds

Removal Characteristics of Endocrine Disrupting Compounds (EDCs), Pharmaceutically Active Compounds (PhACs) and Personal Care Products (PCPs) by NF Membrane (NF막을 이용한 EDCs, PhACs, PCPs 물질의 제거 특성 평가)

  • Jang, Hyuewon;Park, Chanhyuk;Hong, Seungkwan;Yoon, Yeomin;Jung, Jin-Young;Chung, Yun-Chul
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.21 no.3
    • /
    • pp.349-357
    • /
    • 2007
  • Reports of endocrine disrupting compounds (EDCs), pharmaceutically active compounds (PhACs), and personal care products (PCPs) have raised substantial concern in important potable drinking water quality issues. Our study investigates the removal of EDCs, PhACs, and PCPs of 10 compounds having different physico-chemical properties (e.g., molecular weight, and octanol-water partition coefficient ($K_{OW}$)) by nanofiltration (NF) membranes. The rejection of micropollutants by NF membranes ranged from 93.9% to 99.9% depending on solute characteristics. A batch adsorption experiments indicated that adsorption is an important mechanism for transport/removal of relatively hydrophobic compounds, and is related to the octanol-water partition coefficient values. The transport phenomenon associated with adsorption may also depend on solution water chemistry such as pH and ionic strength influencing the pKa value of compounds. In addition, it was visually seen that the retention was somewhat higher for the larger compounds based on their molecular weight. These results suggest that the NF membrane retains many organic compounds due to both hydrophobic adsorption and size exclusion mechanisms.

Adsorption Characteristics of Iodo-Trihalomethanes (I-THMs) in Granular Activated Carbon (GAC) Adsorption Process (활성탄 흡착공정에서의 요오드계 트리할로메탄 흡착 특성)

  • Son, Hee-Jong;Yoom, Hoon-Sik;Kim, Kyung-A;Song, Mi-Jung;Ryu, Dong-Choon
    • Journal of Environmental Science International
    • /
    • v.24 no.1
    • /
    • pp.65-71
    • /
    • 2015
  • This study accessed the adsorption characteristics of the 9 trihalomethanes (THMs) on coal-based granular activated carbon (GAC). The breakthrough appeared first for $CHCl_3$ and sequentially for $CHBr_2Cl$, $CHBr_3$, $CHCl_2I$, CHBrClI, $CHBr_2I$, $CHClI_2$, $CHBrI_2$, and $CHI_3$. The maximum adsorption capacity (X/M) for the 9 THMs with apparent breakthrough points ranged from $1,175{\mu}g/g$ (for $CHCl_3$) to $11,087{\mu}g/g$ (for $CHI_3$). Carbon usage rate (CUR) for $CHCl_3$ was 0.149 g/day, 5.5 times higher than for $CHCl_3$ (0.027 g/day).

Study on Adsoption Characteristics of Tharonil on Activated Carbon Fixed Bed (활성탄 고정층에 대한 Tharonil의 흡착특성에 관한 연구)

  • Lee, Jong-Jip;Yu, Yong-Ho
    • Journal of the Korean Society of Safety
    • /
    • v.17 no.1
    • /
    • pp.54-60
    • /
    • 2002
  • To obtain the breakthrough characteristics for the design of fixed bed adsorption plant, adsorption experiment on granular activated carbon was performed with tharonil in the fixed bed. The pore diffusivity and surface diffusivity of tharonil estimated by the concentration-time curve and adsorption isotherm were $D_s=2.825{\times}10^{-9}cm^2/s,\;D_p=1.26{\times}10^{-5}cm^2/s$, respectively. From comparison of the pore diffusivity and surface diffusivity, it was found that surface diffusion was controlling step for intrapaticle diffusion. The breakthrough curve predicted by constant pattern-linear driving force model were shown to agree with the experimental results. The surface diffusivity and film mass transfer coefficient had no effect on the theoretical breakthrough curve but the adsorption isotherm had fairly influence on it. Appearance time of breakthrough curve is faster with the increase flow rate and inflow concentration of liquid. The utility of granular activated carbon is enhanced with the increase of bed height and with the decrease of inflow rate.

Adsorption and Leaching Characteristics of the Artificial Soils Produced from Sludge (슬러지를 이용하여 생산한 인공토양의 흡착 및 용출 특성)

  • 윤춘경;김선주;임융호;정일민
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.40 no.4
    • /
    • pp.77-84
    • /
    • 1998
  • Adsorption and leaching characteristics of the artificial soils produced from water and wastewater treatment sludges were examined. The batch adsorption test and TCLP leaching test were used, and constituents of interest were heavy metals and nutrients. As, Cr, Cu, Pb, and Cd were analyzed for metals, and nitrogen and phosphorus were analyzed for nutrients. All the artificial soils showed strong adsorption and low leaching for the heavy metals, which implies that the artificial soils may not be hazardous to the environment due to heavy metals and even they can be utilized effectively to remove metals in solution like mine and industrial wastewaters. This is quite promising result because in most case heavy metals are the most concern in the application of sludge product to the farmland. For the nutrients, generally, artificial soils showed high adsorption and low leaching except artificial soil from wastewater sludge produced by low temperature firing. The artificial soils produced from water treatment sludge were active in adsorbing nutrients and showed low leaching that they can be practically used to remove nutrients in advanced treatment process of the wastewater. The artificial soils produced from wastewater treatment sludge were less active in adsorbing nutrients and showed high teaching. However, they could be used usefully if applied properly to the plant growing because of their fertilizing effect. Based on the test results, overall, the artificial soils were thought to be not hazardous to the environment and they could be more useful if applied properly.

  • PDF

Performance Evaluation of Subsurface-flow Wetland with Media Possessing Different Adsorption Capacities for Nitrogen and Phosphorus (질소 및 인에 대한 흡착특성이 다른 여재를 사용한 지하흐름형 인공습지 효율 평가)

  • Seo, Jun-Won;Jang, Hyung-Suk;Kang, Ki-Hoon
    • Journal of Korean Society on Water Environment
    • /
    • v.23 no.1
    • /
    • pp.155-160
    • /
    • 2007
  • Constructed wetland has been widely used for the treatment of sewage, stormwater runoff, industrial wastewater, agricultural runoff, acid mine drainage and landfill leachate. For the removal of nitrogen and phosphorus, uptake by plants and adsorption to media material are the major processes, and, therefore, the selection of media with specific adsorption capacity is the critical factor for the optimal design of wetland along with the selection of appropriate plant species. In this study, two media materials (loess bead and mixed media) possessing different adsorption characteristics for ammonium and phosphate were selected, and their adsorption characteristics were evaluated. In addition, the performance of subsurface-flow wetland systems employing these media was evaluated in both batch and continuous flow systems. With LB medium, beter phosphorus removal was observed, while better ammonia removal was obtained with MM medium. In addition, enhanced removal efficiencies were observed in the wetland systems employing both media and aquatic plants, mainly due to the better environment for microbial growth. As a result, appropriate selection or combination of media with respect to the inflow water quality maybe important factors for the successful design and operation of wetland systems.

Study of 1,2-Dichlorobenzene Adsorption Characteristics on Graphite using Moment Method (모멘트 법을 이용한 그래파이트의 1,2-디클로로벤젠 흡착특성 연구)

  • Nam, Kyung Soo;Kwon, Sang Soog;Yoo, Kyung Seun
    • Applied Chemistry for Engineering
    • /
    • v.18 no.6
    • /
    • pp.603-606
    • /
    • 2007
  • Gas chromatograph equipped with ECD (Electron Ionization Detector) was used to investigate the adsorption characteristics of 1,2-dichlorobenzene, which has a similar structure with dioxin, on graphite. Equilibrium adsorption constants of 1,2-dichlorobenzene on graphite were measured as 10.333, 6.167 and $4.270m^3/kg$ at 220, 240, $260^{\circ}C$, respectively. The isosteric heat of adsorption of 1,2-dichlorobenzene on graphite was 11.554 kcal/mol. This was because specific surface area was low and the amount of surface functional groups was small.

Adsorption Characteristics of Surfactants on Soil (계면활성제의 토양 흡착 특성)

  • Lee, Chaeyoung;Park, Seungyong
    • Journal of the Korean GEO-environmental Society
    • /
    • v.12 no.10
    • /
    • pp.23-28
    • /
    • 2011
  • This study was conducted to investigate the adsorption characteristics of various surfactants including biosurfactant, SWA 1503, Triton X-100 and sodium dodecyl sulfate(SDS) on soil. The Freundlich adsorption isotherm equation was found to be the best to describe experimental results. The amount of adsorbed surfactant on soil increased as the content of clay increased. The results showed that surfactant was adsorbed mainly on the surface and the pores of soil since the surface area of clay was larger than that of sand. The amount of adsorbed surfactants on soil was as follows: Biosurfactant > SWA 1503 > Triton X-100 > SDS.

Hydrothermal synthesis, structure and sorption performance to cesium and strontium ions of nanostructured magnetic zeolite composites

  • Dran'kov, Artur;Shichalin, Oleg;Papynov, Evgeniy;Nomerovskii, Alexey;Mayorov, Vitaliy;Pechnikov, Vladimir;Ivanets, Andrei;Buravlev, Igor;Yarusova, Sofiya;Zavjalov, Alexey;Ognev, Aleksey;Balybina, Valeriya;Lembikov, Aleksey;Tananaev, Ivan;Shapkin, Nikolay
    • Nuclear Engineering and Technology
    • /
    • v.54 no.6
    • /
    • pp.1991-2003
    • /
    • 2022
  • The problem of water contamination by long-living cesium and strontium radionuclides is an urgent environmental issue. The development of facile and efficient technologies based on nanostructured adsorbents is a perspective for selective radionuclides removal. In this regard, current work aimed to obtain the nanostructured magnetic zeolite composites with high adsorption performance to cesium and strontium ions. The optimal conditions of hydrothermal synthesis were established based on XRD, SEM-EDX, N2 adsorption-desorption, VSM, and batch adsorption experiment data. The role of chemical composition, textural characteristics, and surface morphology was demonstrated. The monolayer ionexchange mechanism was proposed based on adsorption isotherm modeling. The highest Langmuir adsorption capacity of 229.6 and 105.1 mg/g towards cesium and strontium ions was reached for composite obtained at 90 ℃ hydrothermal treatment. It was shown that magnetic characteristics of zeolite composites allowing to separate spent adsorbents by a magnet from aqueous solutions.

Removal Characteristics of Crystal Violet and Methylene Blue from Aqueous Solution using Wood-based Activated Carbon (목질계 활성탄에 의한 수중의 Methylene blue와 Crystal violet의 제거 특성)

  • Jeon, Jin-Wo;Yu, Hae-Na;Kam, Sang-Kyu;Lee, Min-Gyu
    • Journal of Environmental Science International
    • /
    • v.22 no.11
    • /
    • pp.1433-1441
    • /
    • 2013
  • The adsorption ability of wood-based activated carbon to adsorb methylene blue (MB) and crystal violet (CV) from aqueous solution has been investigated. Adsorption studies were carried out on the batch experiment at different initial MB and CV concentrations (MB=150 mg/L~400 mg/L, CV=50 mg/L~350 mg/L), contact time, and temperature. The results showed that the MB and CV adsorption process followed the pseudo-second-order kinetic and intraparticle diffusion was the rate-limiting step. Adsorption equilibrium data of the adsorption process fitted very well to both Langmuir and Freundlich model. The maximum adsorption capacity ($q_m$) by Langmuir constant was 416.7 mg/g for MB and 462.4 mg/g for CV. The thermodynamic parameters such as ${\Delta}H^{\circ}$, ${\Delta}S^{\circ}$ and ${\Delta}G^{\circ}$ were evaluated. The MB and CV adsorption process was found to be endothermic for the two dyes.

Comparative Study on Adsorptive Characteristics of Diazinon in Water by Various Adsorbents

  • Ryoo, Keon Sang;Jung, Sun Young;Sim, Hun;Choi, Jong-Ha
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.9
    • /
    • pp.2753-2759
    • /
    • 2013
  • The aim of the present study is to explore the possibility of utilizing fly ash and loess, as alternative to activated carbon, for the adsorption of diazinon in water. Batch adsorption experiment was performed to evaluate the influences of various factors like initial concentration, contact time and temperature on the adsorption of diazinon. The adsorption data shows that fly ash is not effective for the adsorption of diazinon. The equilibrium data for both activated carbon and loess were fitted well to the Freundlich isotherm model. The pseudo-second-order kinetic model appeared to be the better-fitting model because it has higher $R^2$ compared to the pseudo-first-order kinetic model. The thermodynamic parameters such as free energy (${\Delta}G$), the enthalpy (${\Delta}H$) and the entropy (${\Delta}S$) were calculated. Contrary to loess, the ${\Delta}G$ values of activated carbon were negative at the studied temperatures. It indicates that the adsorption of diazinon by activated carbon is a favorable and spontaneous process. The positive ${\Delta}H$ values of activated carbon and loess suggest that the diazinon adsorption process is endothermic in nature. In addition, the positive ${\Delta}S$ values show that increased randomness occurs at the solid/solution surface during the adsorption of diazinon.