• 제목/요약/키워드: adsorption characteristics

검색결과 1,436건 처리시간 0.03초

Red mud를 이용한 중금속 Cd 및 Pb의 흡착제거 특성 (Removal Characteristics of Cd and Pb by Adsorption on Red Mud)

  • 임수빈;김재곤;송호철
    • 한국지반환경공학회 논문집
    • /
    • 제12권7호
    • /
    • pp.39-47
    • /
    • 2011
  • 본 연구에서는 red mud를 흡착제로 이용하여 산성광산배수내 대표적인 유해 중금속인 Cd과 Pb의 흡착특성을 파악하고, 산처리와 소성처리 방식으로 활성화된 red mud에 의한 Cd와 Pb의 중금속 흡착능의 변화를 알아보고자 하였다. Red mud에 대한 Cd과 Pb의 흡착은 반응시간 30분 이내에 대부분 발생하였으며, 5시간 경과 후에는 평형상태에 도달하는 것으로 나타났다. pH가 증가할수록 red mud에 대한 Cd 및 Pb의 흡착은 증가하는 것으로 나타났다. Red mud를 증류수 혹은 산으로 중화 처리하거나 산처리 혹은 소성처리 등과 같은 활성화 처리할 경우 Cd와 Pb에 대한 red mud의 흡착능은 오히려 감소하는 것으로 나타났으므로 red mud를 이용한 Cd와 Pb의 흡착제거는 가공하지 않은 원 상태의 red mud를 이용하는 것이 효과적인 것으로 파악되었다. Red mud에 대한 Cd와 Pb의 흡착거동은 Langmuir 및 Freundlich 등온흡착모델에 모두 잘 적용되었으며, Red mud 흡착제에 대한 Langmuir 등온 흡착식의 $q_m$ 과 Freundlich 등온흡착식의 $K_F$ 상수값은 Cd에 대하여 각각 5.230mg/g와 1.118mg/g이었으며 Pb에 대해서는 각각 22.222mg/g와 7.241mg/g의 값을 나타내고 있었다.

석탄계 입상활성탄에 의한 Reactive Red 120의 흡착 특성 : 등온선, 동력학 및 열역학 파라미터 (Adsorption Characteristics of Reactive Red 120 by Coal-based Granular Activated Carbon : Isotherm, Kinetic and Thermodynamic Parameters)

  • 이종집
    • 공업화학
    • /
    • 제31권2호
    • /
    • pp.164-171
    • /
    • 2020
  • 석탄계 활성탄을 사용한 Reactive Red 120 (RR 120) 염료의 흡착특성을 활성탄의 양, pH, 초기농도, 접촉시간 및 온도를 흡착변수로 사용하여 조사하였다. 등온흡착평형관계는 Langmuir 식이 Freundlich 식보다 더 잘 맞았다. 흡착 메카니즘은 균일한 에너지 분포를 가진 단분자층 흡착이 우세하다고 판단되었다. 평가된 Langmuir 분리계수(RL = 0.181~0.644)로부터 이 흡착공정이 효과적인 처리영역(RL = 0~1)에 속하는 것을 알았다. Temkin 식과 Dubinin-Radushkevich 식에 의해 구한 흡착에너지는 각각 E = 15.31~7.12 J/mol과 B = 0.223~0.365 kJ/mol로 흡착공정은 모두 물리흡착(E < 20 J/mol, B < 8 kJ/mol)으로 나타났다. 흡착속도실험결과는 유사 1차 반응속도식에 잘 맞았다. CGAC에 대한 RR 120 염료의 흡착반응은 온도가 올라갈수록 자유에너지 변화값이 감소하였기 때문에 온도 증가와 함께 자발성이 높아지는 것으로 나타났다. 엔탈피 변화(12.747 kJ/mol)는 흡열반응임을 알려주었다. CGAC에 의한 RR 120의 흡착반응의 등량흡착열은 9.78~24.21 kJ/mol로 물리흡착(< 80 kJ/mol)임을 밝혔다.

ACF 흡착관 개발을 위한 파괴특성에 관한 연구 (A study on breakthrough characteristics of activated carbon fiber by development of sorbent tube)

  • 원정일;김기환
    • 환경위생공학
    • /
    • 제20권1호
    • /
    • pp.40-54
    • /
    • 2005
  • This dissertation aims to develop adsorption tubes for measuring organic solvents in the working environment, by comparing and analyzing breakthrough condition and adsorption capacity with ACF. 1. In breakthrough characteristics, the raising velocity of breakthrough curve is increasing according to assault concentration, but $50\%$ breakthrough time is decreasing. As breakthrough curve of calculated data using this agrees with the one of experimental data both of them can be used on determining sampling time of adsorption tubes. It is predicted by theoretical that $10\%$ breakthrough time is increasing in the case of increasing filled adsorbent amount. 2. $10\%$ breakthrough time is regularly decreasing as much as assault concentration is increasing. As a result, we can predict the life of adsorbent within the range of the low concentration, and adsorption amount that ACF can sample during $10\%$ breakthrough time is increasing as much as assault concentration is increasing.

NH3 and H2S Removal Characteristics on Spherical Carbons: Synergistic Effect between Activated Carbon and Zeolite Composites

  • Ye, Shu;Oh, Won-Chun
    • 한국재료학회지
    • /
    • 제26권12호
    • /
    • pp.726-732
    • /
    • 2016
  • In this study, we used activated carbon(AC) as a carbon source, along with zeolite, to prepare spherical carbons using sucrose, starch and phenolic resin(PR) as binder material. The physicochemical characteristics of the three samples(AZ4P, AZ6P and AZ8P) were examined by BET, XRD, SEM, EDX, $H_2S/NH_3$ gas adsorption, compressive strength and ignition test techniques. Through comparative analysis of the compressive strength and ignition test results the AZ8P sample was found to have the best hardness and the highest temperature resistance capacity. After activation, the AZ8P sample had the best $H_2S$ adsorption capacity, and AZ6P was the most suitable for the adsorption of ammonia.

생물활성탄의 여재선정을 위한 유기물의 흡착 및 생물분해 특성에 관한 연구 (A Study on the Characteristics of Adsorption and Biodegradation of Organic Matter for the Media Selection in Biological Activated Carbon)

  • 우달식
    • 환경위생공학
    • /
    • 제13권2호
    • /
    • pp.156-164
    • /
    • 1998
  • This study was performed to select media for the development of biological activated carbon process. Using activated carbon made by Norit, Calgon, Samchully Co., removal efficiency of humic acid by the isothermal adsorption test and biodegradation of organic matters by microbes attached to BAC and observation and counting of microbes attached to BAC were examined. The removal efficiency of humic acid with dose of activated carbon was influenced by initial concentration. Compared with other activated carbon, Norit was found to be most effective in view of adsorption capacity, biodegradation of organic matter, and attachment characteristics of microorganism. In conclusion, Norit which has high adsorption capacity and good biodegradation of organic matter was recommended for selecting media in BAC process.

  • PDF

단일 및 복합중금속용액에서 제강급랭슬래그의 경쟁흡착특성 (Competitive Adsorption Characteristics of Rapid Cooling Slag in Single- and Multi-Metal Solutions)

  • 박종환;김홍출;김성헌;이성태;강병화;강세원;서동철
    • 한국환경농학회지
    • /
    • 제35권1호
    • /
    • pp.24-31
    • /
    • 2016
  • 본 연구는 산업폐기물의 일종인 제강급랭슬래그의 중금속 폐수처리를 위한 여재로서의 활용도를 높이고자 단일 및 복합 중금속용액에 대한 제강급랭슬래그의 경쟁흡착특성을 조사하였다. Freundlich 등온흡착식을 이용한 Cd, Cu 및 Zn의 흡착능은 단일 용액일 때 각각 2.21, 2.56 및 0.89이었으며, 복합 용액일 때는 각각 0.31, 1.28 및 0.37이었으며, Langmuir 등온흡착식을 이용한 제강급랭슬래그의 최대흡착능은 단일 용액일 때 Cu(16.6 mg/g) > Cd(8.1 mg/g) > Zn(6.2 mg/g)순이었으며, 복합 용액일 때 Cu(14.5 mg/g) >> Zn(1.3 mg/g) > Cd(0.6 mg/g)이었다. Freundlich와 Langmuir 등온흡착식은 모두 동일한 경향으로 단일 용액에서 최대흡착능에 비해 복합 용액일 때 흡착능은 감소하는 경향이었다. 특히 Cu의 경우는 단일 용액에 비해 복합용액일때 흡착능이 12.6% 정도로 약간 감소하였으나, Cd 및 Zn의 경우는 단일 용액에 비해 복합 용액일 때 흡착능이 각각 92.6% 및 79.0% 정도로 현저하게 감소함을 알 수 있었다. 이상의 결과를 미루어 볼 때, Cd 및 Zn은 경쟁 이온이 없는 단일 용액에서는 흡착제에 대해 높은 흡착능을 보였으나, 복합용액에서는 경쟁관계인 Cu에 의해 상대적으로 흡착능이 감소한 것으로 판단된다. 제강급랭슬래그의 단일 및 복합중금속 용액에서 Cd, Cu 및 Zn의 흡착량은 전반적으로 Langmuir 등온흡착식이 Freundlich 등온흡착식에 비해 잘 일치하였으며, 또한 단일 및 복합중금속 용액에서 각 금속의 흡착패턴은 각 금속의 경쟁으로 인하여 서로 다른 패턴을 가지는 것을 알 수 있었다. 따라서 제강급랭슬래그는 중금속 폐수처리를 위한 여재로 충분히 활용이 가능할 것으로 판단된다.

$TiO_2$ 전극과 Ru(II) 염료와의 흡착에 있어서 온도 및 pH의 영향 (Influence of Temperature and pH on Adsorption of Ru(II) Dye from Aqueous Solution onto $TiO_2$ Films)

  • 황경준;유승준;심왕근;이재욱
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2010년도 추계학술대회 초록집
    • /
    • pp.60.2-60.2
    • /
    • 2010
  • A $TiO_2$ films in dye-sensitized solar cells was fabricated using $TiO_2$ colloidal sol prepared from titanium iso-propoxide used as a starting material by applying the sol-gel method. It was characterized by particle size analyzer, XRD, FE-SEM, and BET analysis. The adsorption isotherms of dye molecule on $TiO_2$ films were obtained at three different temperatures (30, 45, $60^{\circ}C$) and at three different pH (3, 5, 7). The adsorption kinetics of dye molecule on $TiO_2$ films were obtained at three different temperatures (30, 45, $60^{\circ}C$. The adsorption experimental data were correlated with Langmuir isotherm model and pseudo-second-order model. Also the isosteric enthalpies of dye adsorption were calculated by the Clausius-Clapeyron equation. In addition, the adsorption energy distribution functions which describe heterogeneous characteristics of nanocrystalline $TiO_2$ film surface were calculated by using the generalized nonlinear regularization method. We found that efficient adsorption of N719 dye from aqueous solution onto $TiO_2$ films can be successfully achieved by dye adsorption conditions and morphology of $TiO_2$ films.

  • PDF

수용액 중에서 Polyamine계 유기응집제를 이용한 중금속 이온의 흡착 - 키토산의 분자량과 탈아세틸화도 - (An Investigation for the Adsorption of Heavy Metal Ions by Polyamine Organic Adsorbent from the Aqueous Solution - The Influence of Molecular Weight and Degree of Deacetylation of Chitosan -)

  • 박영미;전동원
    • 한국의류산업학회지
    • /
    • 제8권4호
    • /
    • pp.458-464
    • /
    • 2006
  • The adsorption ability of heavy metal ions from the aqueous solution by chitosan, which it is well known natural biopolymer, has been investigated. The fundamental study in this research is focusing on the physicochemical adsorption utilizing the chitosan as a organic chelating adsorbent, adsorb especially heavy metal ions from the waste liquid solution. The adsorption ability of the chitosan between metal ions, having different characteristics with Mw of 188,600, 297,200, and 504,200 g/mol and degree of deacetylation (DD) of 86.92% and 100% were investigated targeting on the $Ni^{2+}$, $Co^{2+}$, $Zn^{2+}$, and $Pb^{2+}$ ions, respectively. The uptake of heavy metal ions with chitosan was performed by atomic absorption flame emission spectrophotometer (AAS) as conducted residual metal ions. It was found that chitosan has an strong adsorption capacity for some metals under certain conditions. Chitosan, which have 100% degree of deacetylation showed high adsorption recovery ratio and have an affinity for all kinds of heavy metals. In contrast, the molecular weight of chitosan was not completely affected on metal ion adsorption.

주류 제조과정에서 발생하는 바이오매스를 흡착제로 한 구리 제거 특성 (Removal Characteristics of Copper Ion in Wastewater by Employing a Biomass from Liquor Production Process as an Adsorbent)

  • 백미화;김동수
    • 한국물환경학회지
    • /
    • 제22권4호
    • /
    • pp.626-631
    • /
    • 2006
  • The adsorption features of copper ion have been investigated by taking the barley residue which occurring from the beer production process as an adsorbent. Under the experimental conditions, adsorption equilibrium of copper ion was attained within 30 minutes after the adsorption started and the adsorption reaction was observed to be first order. As the temperature increased, the adsorbed amount of copper ion at equilibrium was also increased, which indicated that the adsorption reaction was endothermic. Based on the experimental results which obtained by varying the temperatures, several thermodynamic parameters for copper adsorption reaction were estimated. Regarding the electrokinetic behavior of barley residue, its electrokinetic potential was observed to be positive below pH 5 and turned into negative above this pH. In the pH range from 1.5 to 4, copper adsorption was found to be increased, which was well explained by the electrokinetic behavior of barley residue in the pH range. When nitrilotriacetic acid, which is a complexing agent, was coexisted with copper ion, equilibrium adsorption of copper ion was decreased and this was presumed to be due to the formation of metal complex. In addition, the adsorbed amount of copper ion was examined to be increased when $KNO_3$ was coexisted, however, it approached a saturated value above a certain concentration of $KNO_3$.

폐굴껍질을 흡착제로 한 불소폐수 처리특성에 관한 연구 (Studies on the Adsarption Characteristics of Fluoride Ion-Containing Wastewater by Employing Waste Oyster Shell as an Adsorbent)

  • 이진숙;김동수
    • 한국물환경학회지
    • /
    • 제23권2호
    • /
    • pp.222-227
    • /
    • 2007
  • The adsorption features of fluoride ion on the oyster shell have been investigated for the purpose of the employment of waste oyster shell as an adsorbent for the treatment of fluoride ion-containing wastewater. The major component of oyster shell was examined to be Ca with minor components of Na, Si, Mg, Al, and Fe. As the initial concentration of fluoride ion was raised, its absorbed amount was enhanced at equilibrium, however, the adsorption ratio of fluoride ion compared with its initial concentration was shown to be decreased. Also, adsorption of fluoride ion onto the oyster shell resulted in the formation of $CaF_2$ in the morphological structure of adsorbent. Kinetic analysis showed that the adsorption reaction of fluoride ion generally followed a second order reaction with decreasing rate constant with the initial concentration of adsorbate. Freundlich model agreed well with the adsorption behavior of fluoride ion at equilibrium and the adsorption reaction of fluoride ion was examined to be endothermic. Several thermodynamic parameters for the adsorption reaction were calculated based on thermodynamic equations and the activation energy for the adsorption of fluoride ion onto oyster shell was estimated to be ca. 13.589 kJ/mole.