• Title/Summary/Keyword: adsorption and desorption side

Search Result 5, Processing Time 0.021 seconds

Study on the Adsorption and Desorption Enhance Effect of Oyster Shell Using Peltier Element (페르체소자를 이용한 굴패각의 흡착 및 탈착촉진효과에 관한 연구)

  • Kim, Myoung-Jun
    • Journal of Power System Engineering
    • /
    • v.17 no.1
    • /
    • pp.71-76
    • /
    • 2013
  • This study is experimentally performed for using the oyster shell as a desiccant in the batch type system. The peltier element(thermoelectric device) is used for absorbing and releasing the adsorption and desorption heat generation. The cooling and heating effects of peltier element exist in this experiment and these effects are generally known phenomena among some references. The increase in electric current induced into peltier element is effectively release the heat generation of adsorption and desorption. Consequently, the non-dimensional adsorption and desorption amount would increase with increase in electric current. However, in the case of adsorption, the increase of induced current into peltier element, the heat of cold side can not release sufficiently. So the heat of hot side of peltier is transferred into the cold side.

Vapor Permeability and Moisture Gradient on a Paulownia Wood for Inside Material of Furniture Making

  • Lee, Won-Hee
    • Journal of the Korea Furniture Society
    • /
    • v.19 no.6
    • /
    • pp.447-451
    • /
    • 2008
  • This study was carried out to know the difference of vapor transmission on the thickness of Paulownia wood(Paulownia tomentosa). The behavior of moisture transmission of wood thickness direction is generally estimated by vapor permeability and vapor transmission resistance. In general, Paulownia wood is known to use of inside material for furniture making, because of the excellent ability of vapor adsorption and/or desorption. Quarter sawing Paulownia wood material is prepared and the thickness is 6.0mm, 7.0mm, 8.0mm, 9.0mm, 10.0mm, respectively. The measurement of vapor transmission were conducted by the "cup method" in accordance with JIS(Japanese Industrial Standard) Z-0208. The experiment was made in the condition of 49.8mmHg vapor pressure difference and $40^{circ}C$ at constant temperature. From the experiment results, it was considered that Paulownia wood is very stable on moisture variation and any other material conditions. In this experiment we found that the vapor permeability and vapor permeance was reduced with the increase of wood thickness to vapor direction and vapor transmission resistance and specific vapor transmission resistance was increased with the increase of wood thickness to vapor direction. Besides moisture contents of adsorption and desorption side were about 5 percent and 14 percent, respectively. Mean value was 9.5 percent and about 10 percent in dry oven method. Moisture gradient was reduced with the increase of wood thickness for a small moisture difference of adsorption and desorption side.

  • PDF

Experimental Examinations on the Phenomenon of Transfer and Moisture Diffusion in Wood (목재내(木材內)의 수분확산(水分擴散) 및 전달현상(傳達現象)에 관한 실험적 검정(檢定))

  • Lee, Weon-Hee
    • Journal of the Korean Wood Science and Technology
    • /
    • v.24 no.1
    • /
    • pp.75-80
    • /
    • 1996
  • The purpose of this study is to clarify the mechanism of moisture transfer depend on the thickness of the spruce(Picea sitchensis Carr.). Therefore, as the basic research of moisture transmission, the amount of moisture transmission and the moisture distribution in specimens and temperature of it's surfaces in vapor transmission process were investigated. The experiment was conducted in a steady state. and the moisture distribution was measured by knife cutting and weighing the specimens. The following conclusions were obtained ; 1. It can be found that distribution of moisture in the specimen can be approximated by two different straight lines intersecting at nine or ten percent moisture content. The amount of moisture movement defends on the gradient of moisture in the wood. 2. It is investigated that the wood surface moisture contents(MCs) are less for thinner specimens than for thick ones on the absorption side. On the other hand, the wood surface MCs are greater for thinner specimens than for thick ones on the desorption side. The main factor that affects the EMC of wood would be temperature when the relative humidity of atmosphere is constant. The specimen generate heat with the absorption and desorption process. In addition, the velocities of moisture transmission varied with the thicknesses of specimens. If the temperature of wood becomes greater, its MC decreases. Then the difference between surface MC and EMC of adsorption and desorption side becomes greater for thinner specimens. Therefore it is considered that the coefficients of moisture transfer decreases with the increases of the specimens' thicknesses.

  • PDF

Development of Adsorptive Permeation Membrane (APM) and Process for Separation of $CO_2$ from gas mixtures (이산화탄소 분리를 위한 흡착투과막 및 공정 개발)

  • Yeom, Choong Kyun;Ahn, Hyo Sung;Kang, Kyeong Rok;Kim, Joo Yul;Han, Jin-Soo;Kwon, Keun-Oh
    • Membrane Journal
    • /
    • v.23 no.6
    • /
    • pp.409-417
    • /
    • 2013
  • Adsorptive permeation hollow fiber membrane (APM) has been developed for effectively separating $CO_2$ from gas mixture. Inside the APM, zeolite 13X particles were uniformly dispersed without covering their surfaces by a symmetric porous structure of polypropylene lattice. In this study, $CO_2/N_2$ mixture was used as a simulated gas mixture. Separation was achieved by adsorbing $CO_2$ on the zeolite particles in the APM and then permeating $N_2$ into permeate side in passing all the feed gas through the APM. Adsorptive permeation tests were carried out with a set of APM modules, and the adsorptive permeation performances of the modules were analyzed from the test results. After saturation of the adsorbent with $CO_2$, the APM was regenerated by desorption of $CO_2$ from it through vacuuming both inside of outside of the APM hollow fiber, and the regeneration process of the APM by vacuuming was discussed in terms of regeneration efficiency and energy consumption.

Preparation of Silicon-Carbon Composite via Magnesiothermic Reduction Method and Its Application to the Anode Material for Lithium Ion Battery (마그네슘열환원법을 이용한 실리콘-탄소 복합재 제조 및 리튬이차전지 음극재로의 이용)

  • Kim, Eudem;Kwon, Soon Hyung;Kim, Myung-Soo;Jung, Ji Chul
    • Korean Journal of Materials Research
    • /
    • v.24 no.5
    • /
    • pp.243-248
    • /
    • 2014
  • Silicon-carbon composite was prepared by the magnesiothermic reduction of mesoporous silica and subsequent impregnation with a carbon precursor. This was applied for use as an anode material for high-performance lithium-ion batteries. Well-ordered mesoporous silica(SBA-15) was employed as a starting material for the mesoporous silicon, and sucrose was used as a carbon source. It was found that complete removal of by-products ($Mg_2Si$ and $Mg_2SiO_4$) formed by side reactions of silica and magnesium during the magnesiothermic reduction, was a crucial factor for successful formation of mesoporous silicon. Successful formation of the silicon-carbon composite was well confirmed by appropriate characterization tools (e.g., $N_2$ adsorption-desorption, small-angle X-ray scattering, X-ray diffraction, and thermogravimetric analyses). A lithium-ion battery was fabricated using the prepared silicon-carbon composite as the anode, and lithium foil as the counter-electrode. Electrochemical analysis revealed that the silicon-carbon composite showed better cycling stability than graphite, when used as the anode in the lithium-ion battery. This improvement could be due to the fact that carbon efficiently suppressed the change in volume of the silicon material caused by the charge-discharge cycle. This indicates that silicon-carbon composite, prepared via the magnesiothermic reduction and impregnation methods, could be an efficient anode material for lithium ion batteries.