• 제목/요약/키워드: adsorbed oxygen

Search Result 155, Processing Time 0.022 seconds

The Effect of Adsorbed Oxygen Species on the Partial Oxidation of Ethylene over Ag/α-Al2O3 (Ag/α-Al2O3 촉매상에서의 에틸렌 부분산화반응에 미치는 흡착산소종의 영향)

  • Baik, Choong-Hoon;Lee, Sang-Gi;Yeo, Jong-Kee;Lee, Ho-In
    • Applied Chemistry for Engineering
    • /
    • v.5 no.4
    • /
    • pp.609-615
    • /
    • 1994
  • Partial oxidation of ethylene over 10wt% $Ag/{\alpha}-Al_2O_3$ catalyst was studied with a pulse reactor which was connected directly to a G. C. When ethylene was injected after oxygen injection at the temperature where molecular adsorption of oxygen is difficult ethylene oxide was evolved. From the results, it is suggested that adsorbed atomic oxygen is related with the evolution of ethylene oxide. The selectivity to ethylene oxide decreased with the decrease of the amounts of adsorbed oxygen and bulk oxygen. Ethylene oxide was either decomposed to ethylene and adsorbed oxygen or isomerized to acetaldehyde. However, the isomerization of ethylene oxide to acetaldehyde was strongly suppressed by the preadsorbed oxygen.

  • PDF

Adsorption of molecular oxygen and $SO_2$ on Ni(100)

  • Hyunsukl Jeong;Changmin;Kim, Eunha;Hojun Jeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 1999.07a
    • /
    • pp.180-180
    • /
    • 1999
  • The interaction of oxygen with a Ni(100) surface has been investigated using X-ray Photoelectron Spectroscopy (XPS) and Near-Edge X-ray Absorption Fine Structure (NEXAFS) technique. Below 200L oxygen exposure, molecular oxygen was dissociated to atomic oxygen. Increasing oxygen exposure, -1s binding energy shifted from 531.0 eV to 533.0 eV due to molecular adsorption. The presence of molecular oxygen species was confirmed by NEXAFS. Molecular oxygen adsorbed on Ni(100) was oriented perpendicular to the surface. Upon heating over 150K molecular adsorbed oxygen surface was also analyzed using NEEXFS.

  • PDF

Oxygen Adsorption Process on ZnO Single Crystal

  • 전진;한종수
    • Bulletin of the Korean Chemical Society
    • /
    • v.18 no.11
    • /
    • pp.1175-1179
    • /
    • 1997
  • The adsorption of oxygen on ZnO was monitored by measuring the capacitance of two contacting crystals which have depletion layers originated from the interaction between oxygen and ZnO at 298 K-473 K. An admission of oxygen to the sample induced an irreversible increase in the depth and the amount of adsorbed oxygen was less than 0.001 monolayer in the experimental condition. The relation between pressure of oxygen and variation of the depth was tested from the view point of Langmuir or Freundlich isotherm. Using Hall effect measurement and kinetic experiment, a model equation on the adsorption process was proposed. From the results, it was suggested that oxygen adsorption depended on the rate of electron transfer from ZnO to oxygen while the amount of adsorbed oxygen was kinetically restricted by the height of surface potential barrier.

LIMITED OXIDATION OF IRRADIATED GRAPHITE WASTE TO REMOVE SURFACE CARBON-14

  • Smith, Tara E.;Mccrory, Shilo;Dunzik-Gougar, Mary Lou
    • Nuclear Engineering and Technology
    • /
    • v.45 no.2
    • /
    • pp.211-218
    • /
    • 2013
  • Large quantities of irradiated graphite waste from graphite-moderated nuclear reactors exist and are expected to increase in the case of High Temperature Reactor (HTR) deployment [1,2]. This situation indicates the need for a graphite waste management strategy. Of greatest concern for long-term disposal of irradiated graphite is carbon-14 ($^{14}C$), with a half-life of 5730 years. Fachinger et al. [2] have demonstrated that thermal treatment of irradiated graphite removes a significant fraction of the $^{14}C$, which tends to be concentrated on the graphite surface. During thermal treatment, graphite surface carbon atoms interact with naturally adsorbed oxygen complexes to create $CO_x$ gases, i.e. "gasify" graphite. The effectiveness of this process is highly dependent on the availability of adsorbed oxygen compounds. The quantity and form of adsorbed oxygen complexes in pre- and post-irradiated graphite were studied using Time of Flight Secondary Ion Mass Spectrometry (ToF-SIMS) and Xray Photoelectron Spectroscopy (XPS) in an effort to better understand the gasification process and to apply that understanding to process optimization. Adsorbed oxygen fragments were detected on both irradiated and unirradiated graphite; however, carbon-oxygen bonds were identified only on the irradiated material. This difference is likely due to a large number of carbon active sites associated with the higher lattice disorder resulting from irradiation. Results of XPS analysis also indicated the potential bonding structures of the oxygen fragments removed during surface impingement. Ester- and carboxyl-like structures were predominant among the identified oxygen-containing fragments. The indicated structures are consistent with those characterized by Fanning and Vannice [3] and later incorporated into an oxidation kinetics model by El-Genk and Tournier [4]. Based on the predicted desorption mechanisms of carbon oxides from the identified compounds, it is expected that a majority of the graphite should gasify as carbon monoxide (CO) rather than carbon dioxide ($CO_2$). Therefore, to optimize the efficiency of thermal treatment the graphite should be heated to temperatures above the surface decomposition temperature increasing the evolution of CO [4].

XPS Studies of Oxygen Adsorption on Polycrystalline Nickel Surface

  • Lee, Soon-Bo;Boo, Jin-Hyo;Ahn, Woon-Sun
    • Bulletin of the Korean Chemical Society
    • /
    • v.8 no.5
    • /
    • pp.358-362
    • /
    • 1987
  • The interaction of oxygen with polycrystalline nickel surface has been studied by investigating the X-ray photoelectron spectra of O 1s, Ni $2p_{3/2}$, and their valence band electrons. By comparing the oxygen exposure of this work with the reported results of LEED, AES, and work function measurements, it is found that the atomic oxygen, adsorbed dissociatively in the initial stage of exposure, is responsible for a p(2 ${\times}$ 2) structure and a subsequent c(2 ${\times}$ 2) structure on the Ni(100) surface. This dissociatively adsorbed oxygen species forms surface NiO layer subsequently on further oxygen exposure. The NiO layer is more easily formed with the increasing temperature. Non-stoichiometric oxygen species is also found to accompany the NiO layer. It appears prior to the formation of bulk NiO at all of the temperatures of this work except at 523K.

Adsorbed Oxygen and Electrical Properties of Porous $BaTiO_3$-based Ceramics (다공성 $BaTiO_3$계 세라믹스의 흡착산소와 전기적 성질)

  • Kim, Jun-Gyu;Jo, Won-Seung;Yu, Yeon-Cheol;Park, Gyeong-Sun
    • Korean Journal of Materials Research
    • /
    • v.11 no.10
    • /
    • pp.895-899
    • /
    • 2001
  • Electrical properties of porous $BaTiO_3-based$ ceramics were investigated from the viewpoint of adsorbed oxygen. Namely, the effects of heat-treatment temperature ($450-600^{\circ}C$) and measuring atmosphere (oxygen and nitrogen) on the PTCR characteristics of the porous $BaTiO_3-based$ ceramics were investigated. It was found that the PTCR characteristics of the porous $BaTiO_3-based$ ceramics was developed at $\geq$55$0^{\circ}C$, and the magnitude of the PTCR characteristics increased with increasing heat-treatment temperature. It was also found that the magnitude of the PTCR characteristics in the porous $BaTiO_3-based$ ceramics increased in oxygen atmosphere, whereas decreased in nitrogen atmosphere during heating and cooling.

  • PDF

X-ray Photoelectron Spectroscopy Study of LaFeO3 Powders Synthesized by Solution Combustion (용액연소법으로 제조한 LaFeO3의 XPS 특성)

  • Hwang, Yeon;Kang, Dae-Sik;Park, Mi-Hye;Cho, Sung-Baek
    • Korean Journal of Materials Research
    • /
    • v.18 no.6
    • /
    • pp.313-317
    • /
    • 2008
  • [ $LaFeO_3$ ] powders were synthesized using a method involving solution combustion, and the surface properties of these powders were examined by x-ray photoelectron spectroscopy. As the amount of fuel increased during the synthesis, the $LaFeO_3$ powders became amorphous with a large plate-like shape. It was found that the O 1s spectra were composed of two types of photoelectrons by deconvolutioning the spectra. Photoelectrons with higher binding energy come from adsorbed oxygen ($O^-$) whereas those with lower energy come from lattice oxygen ($O^{2-}$). The ratio of adsorbed and lattice oxygen increased as the ratio of the fuel and nitrate (${\Phi}$) increased. The binding energy of both types of oxygen increased as ${\Phi}$ increased due to the formation of carbonates.

Barrier Height from Ⅴ-Ⅰ Characteristics of Semiconductor Contact: Reaction of Absorbed Oxygen with Carbon Monoxide on ZnO (1010)

  • 김혜정;한종수
    • Bulletin of the Korean Chemical Society
    • /
    • v.18 no.2
    • /
    • pp.149-151
    • /
    • 1997
  • Barrier height on the surface was monitored at 77 K by observing the inflection of V-I characteristics of ZnO(1010)-ZnO(1010) contact in the surface reaction of oxygen species with carbon monoxide. The contact showed inflections at 10-20 mV and 10-50 mV for the sample adsorbed oxygen at 298 K and 573 K, respectively. When the sample adsorbed oxygen at 573 K was exposed to carbon monoxide at 298 K and 573 K, inflections were observed at 10-40 mV and 10-30 mV, respectively. The results indicated that the adsorption of oxygen on ZnO increased the surface barrier height, and the reaction of carbon monoxide with the oxygen-preadsorbed (at 573 K) ZnO decreased the surface barrier height.

Chemisorption and Oxidation of Methanol over V2O5 Catalyst - I. Chemisorptive Behaviors of CO and CH3OH - (V2O5 촉매상에서의 메탄올 흡탈착 및 산화반응 - I. CO와 CH3OH의 화학흡착 특성 -)

  • Kim, Eul-San;Choi, Ki-Hyouk;Lee, Ho-In
    • Applied Chemistry for Engineering
    • /
    • v.5 no.2
    • /
    • pp.189-198
    • /
    • 1994
  • The adsorptive behaviors of carbon monoxide and methanol over $V_2O_5$catalyst were studied by means of thermal desorptlon spectroscopy (TDS) under ultrahigh vacuum conditions. Carbon monoxide adsorbed on oxygen-deficient V sites as well as on V=O groups of the $V_2O_5$ surface. CO adsorbed on the V sites desorbed at 380 K while CO adsorbed on the V=O groups formed carbonate species with surface oxygen of $V_2O_5$ and desorbed as $CO_2$ resulting in the reduction of the surface of she $V_2O_5$catalyst. The amount of CO adsorbed in the form of carbonate species increased by both the pre- and post-adsorbed oxygen. The adsorptive behavior of methanol over the catalyst was studied by thermal desorption experiments of $CH_3OH$, HCHO, CO, and $H_2$ upon methanol adsorption at 298 K. The results showed that methanol was adsorbed dissociatively on the $V_2O_5$catalyst as methoxy and hydroxyl groups at 298K.

  • PDF