• Title/Summary/Keyword: administration information dataset

Search Result 84, Processing Time 0.025 seconds

Participation Level in Online Knowledge Sharing: Behavioral Approach on Wikipedia (온라인 지식공유의 참여정도: 위키피디아에 대한 행태적 접근)

  • Park, Hyun Jung;Lee, Hong Joo;Kim, Jong Woo
    • Journal of Intelligence and Information Systems
    • /
    • v.19 no.4
    • /
    • pp.97-121
    • /
    • 2013
  • With the growing importance of knowledge for sustainable competitive advantages and innovation in a volatile environment, many researches on knowledge sharing have been conducted. However, previous researches have mostly relied on the questionnaire survey which has inherent perceptive errors of respondents. The current research has drawn the relationship among primary participant behaviors towards the participation level in knowledge sharing, basically from online user behaviors on Wikipedia, a representative community for online knowledge collaboration. Without users' participation in knowledge sharing, knowledge collaboration for creating knowledge cannot be successful. By the way, the editing patterns of Wikipedia users are diverse, resulting in different revisiting periods for the same number of edits, and thus varying results of shared knowledge. Therefore, we illuminated the participation level of knowledge sharing from two different angles of number of edits and revisiting period. The behavioral dimensions affecting the level of participation in knowledge sharing includes the article talk for public discussion and user talk for private messaging, and community registration, which are observable on Wiki platform. Public discussion is being progressed on article talk pages arranged for exchanging ideas about each article topic. An article talk page is often divided into several sections which mainly address specific type of issues raised during the article development procedure. From the diverse opinions about the relatively trivial things such as what text, link, or images should be added or removed and how they should be restructured to the profound professional insights are shared, negotiated, and improved over the course of discussion. Wikipedia also provides personal user talk pages as a private messaging tool. On these pages, diverse personal messages such as casual greetings, stories about activities on Wikipedia, and ordinary affairs of life are exchanged. If anyone wants to communicate with another person, he or she visits the person's user talk page and leaves a message. Wikipedia articles are assessed according to seven quality grades, of which the featured article level is the highest. The dataset includes participants' behavioral data related with 2,978 articles, which have reached the featured article level, with editing histories of articles, their article talk histories, and user talk histories extracted from user talk pages for each article. The time period for analysis is from the initiation of articles until their promotion to the featured article level. The number of edits represents the total number of participation in the editing of an article, and the revisiting period is the time difference between the first and last edits. At first, the participation levels of each user category classified according to behavioral dimensions have been analyzed and compared. And then, robust regressions have been conducted on the relationships among independent variables reflecting the degree of behavioral characteristics and the dependent variable representing the participation level. Especially, through adopting a motivational theory adequate for online environment in setting up research hypotheses, this work suggests a theoretical framework for the participation level of online knowledge sharing. Consequently, this work reached the following practical behavioral results besides some theoretical implications. First, both public discussion and private messaging positively affect the participation level in knowledge sharing. Second, public discussion exerts greater influence than private messaging on the participation level. Third, a synergy effect of public discussion and private messaging on the number of edits was found, whereas a pretty weak negative interaction effect of them on the revisiting period was observed. Fourth, community registration has a significant impact on the revisiting period, whereas being insignificant on the number of edits. Fifth, when it comes to the relation generated from private messaging, the frequency or depth of relation is shown to be more critical than the scope of relation for the participation level.

Plant Hardiness Zone Mapping Based on a Combined Risk Analysis Using Dormancy Depth Index and Low Temperature Extremes - A Case Study with "Campbell Early" Grapevine - (최저기온과 휴면심도 기반의 동해위험도를 활용한 'Campbell Early' 포도의 내동성 지도 제작)

  • Chung, U-Ran;Kim, Soo-Ock;Yun, Jin-I.
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.10 no.4
    • /
    • pp.121-131
    • /
    • 2008
  • This study was conducted to delineate temporal and spatial patterns of potential risk of cold injury by combining the short-term cold hardiness of Campbell Early grapevine and the IPCC projected climate winter season minimum temperature at a landscape scale. Gridded data sets of daily maximum and minimum temperature with a 270m cell spacing ("High Definition Digital Temperature Map", HD-DTM) were prepared for the current climatological normal year (1971-2000) based on observations at the 56 Korea Meteorological Administration (KMA) stations using a geospatial interpolation scheme for correcting land surface effects (e.g., land use, topography, and elevation). The same procedure was applied to the official temperature projection dataset covering South Korea (under the auspices of the IPCC-SRES A2 and A1B scenarios) for 2071-2100. The dormancy depth model was run with the gridded datasets to estimate the geographical pattern of any changes in the short-term cold hardiness of Campbell Early across South Korea for the current and future normal years (1971-2000 and 2071-2100). We combined this result with the projected mean annual minimum temperature for each period to obtain the potential risk of cold injury. Results showed that both the land areas with the normal cold-hardiness (-150 and below for dormancy depth) and those with the sub-threshold temperature for freezing damage ($-15^{\circ}C$ and below) will decrease in 2071-2100, reducing the freezing risk. Although more land area will encounter less risk in the future, the land area with higher risk (>70%) will expand from 14% at the current normal year to 23 (A1B) ${\sim}5%$ (A2) in the future. Our method can be applied to other deciduous fruit trees for delineating geographical shift of cold-hardiness zone under the projected climate change in the future, thereby providing valuable information for adaptation strategy in fruit industry.

Vegetation classification based on remote sensing data for river management (하천 관리를 위한 원격탐사 자료 기반 식생 분류 기법)

  • Lee, Chanjoo;Rogers, Christine;Geerling, Gertjan;Pennin, Ellis
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.6-7
    • /
    • 2021
  • Vegetation development in rivers is one of the important issues not only in academic fields such as geomorphology, ecology, hydraulics, etc., but also in river management practices. The problem of river vegetation is directly connected to the harmony of conflicting values of flood management and ecosystem conservation. In Korea, since the 2000s, the issue of river vegetation and land formation has been continuously raised under various conditions, such as the regulating rivers downstream of the dams, the small eutrophicated tributary rivers, and the floodplain sites for the four major river projects. In this background, this study proposes a method for classifying the distribution of vegetation in rivers based on remote sensing data, and presents the results of applying this to the Naeseong Stream. The Naeseong Stream is a representative example of the river landscape that has changed due to vegetation development from 2014 to the latest. The remote sensing data used in the study are images of Sentinel 1 and 2 satellites, which is operated by the European Aerospace Administration (ESA), and provided by Google Earth Engine. For the ground truth, manually classified dataset on the surface of the Naeseong Stream in 2016 were used, where the area is divided into eight types including water, sand and herbaceous and woody vegetation. The classification method used a random forest classification technique, one of the machine learning algorithms. 1,000 samples were extracted from 10 pre-selected polygon regions, each half of them were used as training and verification data. The accuracy based on the verification data was found to be 82~85%. The model established through training was also applied to images from 2016 to 2020, and the process of changes in vegetation zones according to the year was presented. The technical limitations and improvement measures of this paper were considered. By providing quantitative information of the vegetation distribution, this technique is expected to be useful in practical management of vegetation such as thinning and rejuvenation of river vegetation as well as technical fields such as flood level calculation and flow-vegetation coupled modeling in rivers.

  • PDF

Impact of Semantic Characteristics on Perceived Helpfulness of Online Reviews (온라인 상품평의 내용적 특성이 소비자의 인지된 유용성에 미치는 영향)

  • Park, Yoon-Joo;Kim, Kyoung-jae
    • Journal of Intelligence and Information Systems
    • /
    • v.23 no.3
    • /
    • pp.29-44
    • /
    • 2017
  • In Internet commerce, consumers are heavily influenced by product reviews written by other users who have already purchased the product. However, as the product reviews accumulate, it takes a lot of time and effort for consumers to individually check the massive number of product reviews. Moreover, product reviews that are written carelessly actually inconvenience consumers. Thus many online vendors provide mechanisms to identify reviews that customers perceive as most helpful (Cao et al. 2011; Mudambi and Schuff 2010). For example, some online retailers, such as Amazon.com and TripAdvisor, allow users to rate the helpfulness of each review, and use this feedback information to rank and re-order them. However, many reviews have only a few feedbacks or no feedback at all, thus making it hard to identify their helpfulness. Also, it takes time to accumulate feedbacks, thus the newly authored reviews do not have enough ones. For example, only 20% of the reviews in Amazon Review Dataset (Mcauley and Leskovec, 2013) have more than 5 reviews (Yan et al, 2014). The purpose of this study is to analyze the factors affecting the usefulness of online product reviews and to derive a forecasting model that selectively provides product reviews that can be helpful to consumers. In order to do this, we extracted the various linguistic, psychological, and perceptual elements included in product reviews by using text-mining techniques and identifying the determinants among these elements that affect the usability of product reviews. In particular, considering that the characteristics of the product reviews and determinants of usability for apparel products (which are experiential products) and electronic products (which are search goods) can differ, the characteristics of the product reviews were compared within each product group and the determinants were established for each. This study used 7,498 apparel product reviews and 106,962 electronic product reviews from Amazon.com. In order to understand a review text, we first extract linguistic and psychological characteristics from review texts such as a word count, the level of emotional tone and analytical thinking embedded in review text using widely adopted text analysis software LIWC (Linguistic Inquiry and Word Count). After then, we explore the descriptive statistics of review text for each category and statistically compare their differences using t-test. Lastly, we regression analysis using the data mining software RapidMiner to find out determinant factors. As a result of comparing and analyzing product review characteristics of electronic products and apparel products, it was found that reviewers used more words as well as longer sentences when writing product reviews for electronic products. As for the content characteristics of the product reviews, it was found that these reviews included many analytic words, carried more clout, and related to the cognitive processes (CogProc) more so than the apparel product reviews, in addition to including many words expressing negative emotions (NegEmo). On the other hand, the apparel product reviews included more personal, authentic, positive emotions (PosEmo) and perceptual processes (Percept) compared to the electronic product reviews. Next, we analyzed the determinants toward the usefulness of the product reviews between the two product groups. As a result, it was found that product reviews with high product ratings from reviewers in both product groups that were perceived as being useful contained a larger number of total words, many expressions involving perceptual processes, and fewer negative emotions. In addition, apparel product reviews with a large number of comparative expressions, a low expertise index, and concise content with fewer words in each sentence were perceived to be useful. In the case of electronic product reviews, those that were analytical with a high expertise index, along with containing many authentic expressions, cognitive processes, and positive emotions (PosEmo) were perceived to be useful. These findings are expected to help consumers effectively identify useful product reviews in the future.