• Title/Summary/Keyword: administration information dataset

Search Result 84, Processing Time 0.04 seconds

Social Tagging-based Recommendation Platform for Patented Technology Transfer (특허의 기술이전 활성화를 위한 소셜 태깅기반 지적재산권 추천플랫폼)

  • Park, Yoon-Joo
    • Journal of Intelligence and Information Systems
    • /
    • v.21 no.3
    • /
    • pp.53-77
    • /
    • 2015
  • Korea has witnessed an increasing number of domestic patent applications, but a majority of them are not utilized to their maximum potential but end up becoming obsolete. According to the 2012 National Congress' Inspection of Administration, about 73% of patents possessed by universities and public-funded research institutions failed to lead to creating social values, but remain latent. One of the main problem of this issue is that patent creators such as individual researcher, university, or research institution lack abilities to commercialize their patents into viable businesses with those enterprises that are in need of them. Also, for enterprises side, it is hard to find the appropriate patents by searching keywords on all such occasions. This system proposes a patent recommendation system that can identify and recommend intellectual rights appropriate to users' interested fields among a rapidly accumulating number of patent assets in a more easy and efficient manner. The proposed system extracts core contents and technology sectors from the existing pool of patents, and combines it with secondary social knowledge, which derives from tags information created by users, in order to find the best patents recommended for users. That is to say, in an early stage where there is no accumulated tag information, the recommendation is done by utilizing content characteristics, which are identified through an analysis of key words contained in such parameters as 'Title of Invention' and 'Claim' among the various patent attributes. In order to do this, the suggested system extracts only nouns from patents and assigns a weight to each noun according to the importance of it in all patents by performing TF-IDF analysis. After that, it finds patents which have similar weights with preferred patents by a user. In this paper, this similarity is called a "Domain Similarity". Next, the suggested system extract technology sector's characteristics from patent document by analyzing the international technology classification code (International Patent Classification, IPC). Every patents have more than one IPC, and each user can attach more than one tag to the patents they like. Thus, each user has a set of IPC codes included in tagged patents. The suggested system manages this IPC set to analyze technology preference of each user and find the well-fitted patents for them. In order to do this, the suggeted system calcuates a 'Technology_Similarity' between a set of IPC codes and IPC codes contained in all other patents. After that, when the tag information of multiple users are accumulated, the system expands the recommendations in consideration of other users' social tag information relating to the patent that is tagged by a concerned user. The similarity between tag information of perferred 'patents by user and other patents are called a 'Social Simialrity' in this paper. Lastly, a 'Total Similarity' are calculated by adding these three differenent similarites and patents having the highest 'Total Similarity' are recommended to each user. The suggested system are applied to a total of 1,638 korean patents obtained from the Korea Industrial Property Rights Information Service (KIPRIS) run by the Korea Intellectual Property Office. However, since this original dataset does not include tag information, we create virtual tag information and utilized this to construct the semi-virtual dataset. The proposed recommendation algorithm was implemented with JAVA, a computer programming language, and a prototype graphic user interface was also designed for this study. As the proposed system did not have dependent variables and uses virtual data, it is impossible to verify the recommendation system with a statistical method. Therefore, the study uses a scenario test method to verify the operational feasibility and recommendation effectiveness of the system. The results of this study are expected to improve the possibility of matching promising patents with the best suitable businesses. It is assumed that users' experiential knowledge can be accumulated, managed, and utilized in the As-Is patent system, which currently only manages standardized patent information.

Validation of Ocean General Circulation Model (FMS-MOM4) in Relation with Climatological and Argo Data

  • Chang, You-Soon;Cho, Chang-Woo;Youn, Yong-Hoon;Seo, Jang-Won
    • Journal of the Korean earth science society
    • /
    • v.28 no.5
    • /
    • pp.545-555
    • /
    • 2007
  • Ocean general circulation model developed by GFDL on the basis of MOM4 of FMS are examined and evaluated in order to elucidate the global ocean status. The model employs a tripolar grid system to resolve the Arctic Ocean without polar filtering. The meridional resolution gradually increases from $1/3^{\circ}$ at the equator to $1^{\circ}$ at $30^{\circ}N(S)$. Other horizontal grids have the constant $1^{\circ}$ and vertical grids with 50 levels. The ocean is also coupled to the GFDL sea ice model. It considers tidal effects along with fresh water and chlorophyll concentration. This model is integrated for a 100 year duration with 96 cpu forced by German OMIP and CORE dataset. Levitus, WOA01 climatology, serial CTD observations, WOCE and Argo data are all used for model validation. General features of the world ocean circulation are well simulated except for the western boundary and coastal region where strong advection or fresh water flux are dominant. However, we can find that information concerning chlorophyll and sea ice, newly applied to MOM4 as surface boundary condition, can be used to reduce a model bias near the equatorial and North Pacific ocean.

Positive Factors for Return to Work After Accidents: Health Awareness, Consultation with Doctors, and Personal Characteristics of Workers

  • Kang, Dongsuk
    • Safety and Health at Work
    • /
    • v.13 no.1
    • /
    • pp.32-39
    • /
    • 2022
  • Background: Industrial accidents can determine the overall level and quality of the work environment in industries and companies that contribute to national economic development. Korea has transformed the country from an international aid recipient to a donor country, but it has ranked first among the Organisation for Economic Co-operation and Development member countries in the number of fatal industrial accidents. Little has been known about the policy effects in terms of the workers' insurance for their industrial accidents and rehabilitation. This study raises two research questions about the influence of workers' personal characteristics and vocational rehabilitation services on their return to workplaces. Methods: The study implements weighted logistic regression analysis using propensity score matching. This research utilizes the relevant dataset (3,924 persons) of Korea's industrial accident and insurance. Results: The findings show that the level of workers' awareness of health recovery and their counseling for rehabilitation by physicians had positive effects on their return to work. Environmental factors such as workers' job stability at the time of industrial accidents and the temporal effects of industrial accidents (e.g., the level of disability, their age) had negative impacts on their return to work. Conclusions: These findings have policy implications that the concentration of rehabilitation services for patients who have been mildly affected by industrial accidents would be effective in the short and medium term. The findings also highlight the necessity of ongoing policies about workers' vocational recovery with concrete evidence about policy impacts.

A Theoretical Approach: the Worker's task Stress and its Association with Job Performance

  • KIM, Ji-Hye
    • The Journal of Economics, Marketing and Management
    • /
    • v.9 no.5
    • /
    • pp.1-13
    • /
    • 2021
  • Purpose: Purpose - This study investigates and aims to discuss regarding the employee's work stress and its relationship with employee's workability based on literature content analysis. Finally, this study will provide how employees can manage it and coexist while enjoying the benefits of a stress-free working environment. Research design, data, and methodology - The author collected many textual contexts from mostly peer-reviewed academic journals, which means that academic comprehensive integrity can be obtained by qualitative approach for this study with discussing and following a constructive review analysis. The content analysis aims to determine a textural dataset in the longtime frame from the newest textural information. Result - There is little doubt that this study was significant and relevant to the relationship between employee work stress and workability, indicating how organizations that manage their employees in a stress-free working environment. the present researcher separate the solutions into five categories according to the person or body responsible for the answers. Conclusion - The numerous solutions on how to deal with various stresses, the theoretical aspect of the solutions involving the theories developed by multiple past articles on how to solve work stress. In general, workability and work stress is a very large field of study. Another consideration is the numerous professionalisms in the world, and each has different ways stress is induced in the organization.

Research on Selecting Influential Climatic Factors and Optimal Timing Exploration for a Rice Production Forecast Model Using Weather Data

  • Jin-Kyeong Seo;Da-Jeong Choi;Juryon Paik
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.7
    • /
    • pp.57-65
    • /
    • 2023
  • Various studies to enhance the accuracy of rice production forecasting are focused on improving the accuracy of the models. In contrast, there is a relative lack of research regarding the data itself, which the prediction models are applied to. When applying the same dependent variable and prediction model to two different sets of rice production data composed of distinct features, discrepancies in results can occur. It is challenging to determine which dataset yields superior results under such circumstances. To address this issue, by identifying potential influential features within the data before applying the prediction model and centering the modeling around these, it is possible to achieve stable prediction results regardless of the composition of the data. In this study, we propose a method to adjust the composition of the data's features in order to select optimal base variables, aiding in achieving stable and consistent predictions for rice production. This method makes use of the Korea Meteorological Administration's ASOS data. The findings of this study are expected to make a substantial contribution towards enhancing the utility of performance evaluations in future research endeavors.

Application of single-step genomic evaluation using social genetic effect model for growth in pig

  • Hong, Joon Ki;Kim, Young Sin;Cho, Kyu Ho;Lee, Deuk Hwan;Min, Ye Jin;Cho, Eun Seok
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.12
    • /
    • pp.1836-1843
    • /
    • 2019
  • Objective: Social genetic effects (SGE) are an important genetic component for growth, group productivity, and welfare in pigs. The present study was conducted to evaluate i) the feasibility of the single-step genomic best linear unbiased prediction (ssGBLUP) approach with the inclusion of SGE in the model in pigs, and ii) the changes in the contribution of heritable SGE to the phenotypic variance with different scaling ${\omega}$ constants for genomic relationships. Methods: The dataset included performance tested growth rate records (average daily gain) from 13,166 and 21,762 pigs Landrace (LR) and Yorkshire (YS), respectively. A total of 1,041 (LR) and 964 (YS) pigs were genotyped using the Illumina PorcineSNP60 v2 BeadChip panel. With the BLUPF90 software package, genetic parameters were estimated using a modified animal model for competitive traits. Giving a fixed weight to pedigree relationships (${\tau}:1$), several weights (${\omega}_{xx}$, 0.1 to 1.0; with a 0.1 interval) were scaled with the genomic relationship for best model fit with Akaike information criterion (AIC). Results: The genetic variances and total heritability estimates ($T^2$) were mostly higher with ssGBLUP than in the pedigree-based analysis. The model AIC value increased with any level of ${\omega}$ other than 0.6 and 0.5 in LR and YS, respectively, indicating the worse fit of those models. The theoretical accuracies of direct and social breeding value were increased by decreasing ${\omega}$ in both breeds, indicating the better accuracy of ${\omega}_{0.1}$ models. Therefore, the optimal values of ${\omega}$ to minimize AIC and to increase theoretical accuracy were 0.6 in LR and 0.5 in YS. Conclusion: In conclusion, single-step ssGBLUP model fitting SGE showed significant improvement in accuracy compared with the pedigree-based analysis method; therefore, it could be implemented in a pig population for genomic selection based on SGE, especially in South Korean populations, with appropriate further adjustment of tuning parameters for relationship matrices.

A High-Resolution Agro-Climatic Dataset for Assessment of Climate Change over South Korea (남한지역 기후변화량 평가를 위한 고해상도 농업기후 자료)

  • Hur, Jina;Park, Joo Hyeon;Shim, Kyo Moon;Kim, Yong Seok;Jo, Sera
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.22 no.3
    • /
    • pp.128-134
    • /
    • 2020
  • The daily gridded meteorological information and climatology with high resolution (30m and 270m) was produced from 94 Automated Surface Observing System (ASOS) of Korea Meteorological Administration (KMA) for the past 50 years (1971-current) by different downscaling methods. In addition, the difference between daily meteorological data and the mean state of past 30 years (1981-2010) was calculated for the analysis of climate change. These datasets with GeoTiff format are available from the web interface (https://agecoclim. agmet.kr). The performance of the data is evaluated using 172 Automatic Weather S tation (AWS ) of Rural Development of Administration (RDA). The data have biases lower than 2.0, and root mean square errors (RMSE) lower than 3.8. This data may help to better understand the regional climatic change and its impact on agroecosystem in S outh Korea.

A Methodology for Improving fitness of the Latent Growth Modeling using Association Rule Mining (연관규칙을 이용한 잠재성장모형의 개선방법론)

  • Cho, Yeong Bin;Jun, Jae-Hoon;Choi, Byungwoo
    • Journal of the Korea Convergence Society
    • /
    • v.10 no.2
    • /
    • pp.217-225
    • /
    • 2019
  • The Latent Growth Modeling(LGM) is known as the typical analysis method of longitudinal data and it could be classified into unconditional model and conditional model. It is common to assume that the growth trajectory of unconditional model of LGM is linear. In the case of quasi-linear, the methodology for improving the model fitness using Sequential Pattern of Association Rule Mining is suggested. To do this, we divide longitudinal data into quintiles and extract periodic changes of the longitudinal data in each quintiles and make sequential pattern based on this periodic changes. To evaluate the effectiveness, the LGM module in SPSS AMOS was used and the dataset of the Youth Panel from 2001 to 2006 of Korea Employment Information Service. Our methodology was able to increase the fitness of the model compared to the simple linear growth trajectory.

Optimal Forecasting for Sales at Convenience Stores in Korea Using a Seasonal ARIMA-Intervention Model (계절형 ARIMA-Intervention 모형을 이용한 한국 편의점 최적 매출예측)

  • Jeong, Dong-Bin
    • Journal of Distribution Science
    • /
    • v.14 no.11
    • /
    • pp.83-90
    • /
    • 2016
  • Purpose - During the last two years, convenient stores (CS) are emerging as one of the most fast-growing retail trades in Korea. The goal of this work is to forecast and to analyze sales at CS using ARIMA-Intervention model (IM) and exponential smoothing method (ESM), together with sales at supermarkets in South Korea. Considering that two retail trades above are homogeneous and comparable in size and purchasing items on off-line distribution channel, individual behavior and characteristic can be detected and also relative superiority of future growth can be forecasted. In particular, the rapid growth of sales at CS is regarded as an everlasting external event, or step intervention, so that IM with season variation can be examined. At the same time, Winters ESM can be investigated as an alternative to seasonal ARIMA-IM, on the assumption that the underlying series shows exponentially decreasing weights over time. In case of sales at supermarkets, the marked intervention could not be found over the underlying periods, so that only Winters ESM is considered. Research Design, Data, and Methodology - The dataset of this research is obtained from Korean Statistical Information Service (1/2010~7/2016) and Survey of Service Trend of Korea Statistics Administration. This work is exploited time series analyses such as IM, ESM and model-fitting statistics by using TSPLOT, TSMODEL, EXSMOOTH, ARIMA and MODELFIT procedures in SPSS 23.0. Results - By applying seasonal ARIMA-Intervention model to sales at CS, the steep and persisting increase can be expected over the next one year. On the other hand, we expect the rate of sales growth of supermarkets to be lagging and tied up constantly in the next 2016 year. Conclusions - Based on 2017 one-year sales forecasts for CS and supermarkets, we can yield the useful information for the development of CS and also for all retail trades. Future study is needed to analyze sales of popular items individually such as tobacco, banana milk, soju and so on and to get segmented results. Furthermore, we can expand sales forecasts to other retail trades such as department stores, hypermarkets, non-store retailing, so that comprehensive diagnostics can be delivered in the future.

A CNN Image Classification Analysis for 'Clean-Coast Detector' as Tourism Service Distribution

  • CHANG, Mona;XING, Yuan Yuan;ZHANG, Qi Yue;HAN, Sang-Jin;KIM, Mincheol
    • Journal of Distribution Science
    • /
    • v.18 no.1
    • /
    • pp.15-26
    • /
    • 2020
  • Purpose: This study is to analyze the image classification using Convolution Neural Network and Transfer Learning for Jeju Island and to suggest related implications. As the biggest tourist destination in Korea, Jeju Island encounters environmental issues frequently caused by marine debris along the seaside. The ever-increasing volume of plastic waste requires multidirectional management and protection. Research design, data and methodology: In this study, the deep learning CNN algorithm was used to train a number of images from Jeju clean and polluted beaches. In the process of validating and testing pre-processed images, we attempted to explore their applicability to coastal tourism applications through probabilities of classifying images and predicting clean shores. Results: We transformed and augmented 194 small image dataset into 3,880 image data. The results of the pre-trained test set were 85%, 70% and 86%, and then its accuracy has increased through the process. We finally obtained a rapid convergence of 97.73% and 100% (20/20) in the actual training and validation sets. Conclusions: The tested algorithms are expected to implement in applications for tourism service distribution aimed at reducing coastal waste or in CCTVs as a detector or indicator for residents and tourists to protect clean beaches on Jeju Island.