• 제목/요약/키워드: adjusting of posterior probability

검색결과 2건 처리시간 0.014초

목표 범주가 희귀한 자료의 과대표본추출에 대한 연구 (A Study on the Adjustment of Posterior Probability for Oversampling when the Target is Rare)

  • 김은나;이성건;최종후
    • 응용통계연구
    • /
    • 제24권3호
    • /
    • pp.477-484
    • /
    • 2011
  • 반응/미반응 목표변수를 갖는 모집단에서 관심 목표범주의 빈도가 극히 작을 경우, 즉 희귀할(rare) 경우, 모형 구축을 위한 데이터마트를 형성할 때 반응/미반응 범주 구성비는 구축된 모형의 성능에 영향을 준다. 본 연구는 이러한 점에 착안하여 반응/미반응 범주 구성비와 모형성능의 관련성을 모형평가 통계량에 기반하여 판단한다. 이로써 데이터마트 형성에 이상적인 반응/미반응 범주 구성비를 탐지하려는데 본 연구의 목적을 두고 있다. 또한 일반적으로 목표범주의 빈도가 희귀할 경우, 분할 표본추출에 의하여 희귀사건(rare event)을 과대표본추출(oversampling)하는 것이 일반적이며, 이로부터 기인하는 사후확률에 대한 편향을 조정하게 된다. 본 연구에서는 사후확률 조정방법으로 오프셋(offset) 방법과 가중치 방법(sampling weights)을 적용하고 이를 비교하였다.

AdaBoost 알고리즘기반 SVM을 이용한 부실 확률분포 기반의 기업신용평가 (Corporate Credit Rating based on Bankruptcy Probability Using AdaBoost Algorithm-based Support Vector Machine)

  • 신택수;홍태호
    • 지능정보연구
    • /
    • 제17권3호
    • /
    • pp.25-41
    • /
    • 2011
  • 최근 몇 년간 SVM(support vector machines)기법은 패턴인식 또는 분류의사결정문제를 위한 분석기법으로서 기존의 데이터마이닝 기법과 비교할 때, 매우 높은 성과를 갖는 것으로 인식되어 왔다. 더 나아나 많은 연구자들은 SVM기법이 1980년대 이후 대표적인 예측 및 분류모형으로 인정받은 인공신경망기법(ANNs : Artificial Neural Networks)에 비해 더 성과가 좋다는 사실을 실증적으로 입증해 왔다(Amendolia et al., 2003; Huang et al., 2004, Huang et al., 2005; Tay and Cao, 2001; Min and Lee, 2005; Shin et al., 2005; Kim, 2003). 일반적으로 이와 같이 다양한 데이터마이닝 기법에 의해 분석되는 이진분류 또는 다분류 의사결정문제들은 특히 금융분야 등에 있어서 오분류비용에 민감하며, 이로 인한 오분류의 경제적 손실도 상대적으로 매우 크다고 할 수 있다. 따라서 기업부도예측모형과 같은 이진분류모형의 결과값을, 부도확률에 기초하여 정교하게 계산된 사후확률의 개념으로서 다분류의 신용등급평가의 문제로 변환할 필요가 있다. 그러나, SVM 모형의 결과값은 기본적으로 그와 같은 부도확률분포를 보여주지 않는다. 따라서, 그러한 확률분포를 정교하게 보여줄 방법을 제시할 필요가 있다(Platt, 1999; Drish, 2001). 본 연구는 AdaBoost 알고리즘기반의 SVM 모형을 이용하여, 이진분류모형으로서 IT 기업의 부실예측모형에 적용한 후, 이 SVM 모형의 예측결과를 SVM의 손실함수에 적용하여 계산된 값을 사후부도확률의 정규분포 특성에 따라 이를 구간화하여 IT기업에 대한 다분류 신용등급 평가의 문제로 전환시키는 방법을 제시하였다. 그리고 본 연구에서 제안하는 방법은 이러한 AdaBoost 알고리즘기반 SVM 모형이 각 기업이 고유한 신용위험(부도확률)을 갖고 있다는 조건하에서, 신용등급부여를 위한 부도확률분포 구간을 정교하게 조정함으로써 오분류 문제를 좀 더 줄일 수 있음을 제시하였다.