• Title/Summary/Keyword: adjustable autonomy

Search Result 2, Processing Time 0.022 seconds

Seamless Switching in the Implementation of the Adjustable Autonomy of Human-Robot Teams (인간-로봇 팀의 조절가능 자율도 구현에서 무결절 전환)

  • Cho, Hye-Kyung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.1
    • /
    • pp.65-71
    • /
    • 2007
  • Adjustable autonomy architecture provides various ways for a human operator to participate as a member of a human-robot team in improving the performance of the team by resolving issues that the robots cannot deal with or performing tasks that the robots alone would unable to do. According to the level of involvement of the human operator, the robots have to adjust their level of autonomy and, in consequence, the operation mode of the overall system shifts. This paper deals with the implementation issues of seamless switching when the level of autonomy of the human-robot team shifts from one level to another. Especially, we focus on developing reliable methods for monitoring the task progress and maximizing the system flexibility by coping with the detailed differences between humans and robots in their characteristics of motions and their choices of positions, paths, and sequences of sub-goals to achieve a given task. To test and motivate the proposed methods, we have assembled three heterogeneous robots which work together to dock both ends of a suspended beam into stanchions.

A Study on the Adjustable Autonomy for the Performance Improvement of Cooperating Robots (협조 로봇의 작업 성능 향상을 위한 자율도 조정에 관한 연구)

  • Cho, Hye-Kyung
    • Journal of the Korea Society for Simulation
    • /
    • v.15 no.3
    • /
    • pp.61-67
    • /
    • 2006
  • This paper provides a systematic way of integrating human intelligence and autonomous precision of robots to achieve the highest possible performance of a cooperating robot system. Adjustable autonomy, which deals with the combination of human and robotic skills, has the potential to bridge the gap which leaves many tasks suited to robotics beyond the reach of existing technology. Especially we will show that relevant human assistance or intervention will increase system performance by improving the exception handling capability, simplifying autonomous operation, and boosting speed and reliability. To support the usefulness of our scheme, a series of experiments were conducted with three cooperating robots which work together to dock both ends of a long suspended beam into stanchions.

  • PDF