• Title/Summary/Keyword: adipose-derived mesenchymal stem cells

Search Result 84, Processing Time 0.023 seconds

Comparison of Neural Cell Differentiation of Human Adipose Mesenchymal Stem Cells Derived from Young and Old Ages (연령별 지방 중간엽 유래 줄기세포의 신경세포로의 분화 능력 비교)

  • Jo, Jung-Youn;Kang, Sung-Keun;Choi, In-Su;Ra, Jeong-Chan
    • Development and Reproduction
    • /
    • v.13 no.4
    • /
    • pp.227-237
    • /
    • 2009
  • Recently, adipose mesenchymal stem cells (AdMSC) that are similar to bone marrow MSC and blood derived MSC are thought to be another source for stem cell therapy. However, the diseases that can be applied for stem cells therapy are age-dependent degenerative diseases. Accordingly, the present study investigated the growth and differentiation potential to neural cells of human AdMSC (hAdMSC) obtained from aged thirty, forty and fifty. The growth of cells and cell viability were measured by passage and neural differentiation of hAdMSC was induced in neural differentiation condition for 10 days. Our results demonstrated that cell number, viability and morphology were not different from hAdMSC by age and passage. Immunofluorescence analysis of neural cell marker (TuJ1, NSE, Sox2, GFAP or MAP2) demonstrated no significant differences in neural cell differentiation by age and passage. As the number of passage was increased, the mRNA level of MAP2 and Sox2 was decreased in hAdMSC from age of 50 compared to hAdMSC from age of 30. In conclusion, the present study demonstrated that ability of neural cell differentiation of hAdMSC was maintained with ages, suggesting that autologous stem cells from aged people can be applied for stem cell therapy with age-dependent neural disease with the same stem cell quality and ability as stem cell derived from young age.

  • PDF

GAPDH, β-actin and β2-microglobulin, as three common reference genes, are not reliable for gene expression studies in equine adipose- and marrow-derived mesenchymal stem cells

  • Nazari, Fatemeh;Parham, Abbas;Maleki, Adham Fani
    • Journal of Animal Science and Technology
    • /
    • v.57 no.5
    • /
    • pp.18.1-18.8
    • /
    • 2015
  • Background: Quantitative real time reverse transcription PCR (qRT-PCR) is one of the most important techniques for gene-expression analysis in molecular based studies. Selecting a proper internal control gene for normalizing data is a crucial step in gene expression analysis via this method. The expression levels of reference genes should be remained constant among cells in different tissues. However, it seems that the location of cells in different tissues might influence their expression. The purpose of this study was to determine whether the source of mesenchymal stem cells (MSCs) has any effect on expression level of three common reference genes (GAPDH, ${\beta}$-actin and ${\beta}2$-microglobulin) in equine marrow- and adipose-derived undifferentiated MSCs and consequently their reliability for comparative qRT-PCR. Materials and methods: Adipose tissue (AT) and bone marrow (BM) samples were harvested from 3 mares. MSCs were isolated and cultured until passage 3 (P3). Total RNA of P3 cells was extracted for cDNA synthesis. The generated cDNAs were analyzed by quantitative real-time PCR. The PCR reactions were ended with a melting curve analysis to verify the specificity of amplicon. Results: The expression levels of GAPDH were significantly different between AT- and BM-derived MSCs (p < 0.05). Differences in expression level of ${\beta}$-actin (P < 0.001) and B2M (P < 0.006.) between MSCs derived from AT and BM were substantially higher than GAPDH. In addition, the fold change in expression levels of GAPDH, ${\beta}$-actin and B2M in AT-derived MSCs compared to BM-derived MSCs were 2.38, 6.76 and 7.76, respectively. Conclusion: This study demonstrated that GAPDH and especially ${\beta}$-actin and B2M express in different levels in equine AT- and BM-derived MSCs. Thus they cannot be considered as reliable reference genes for comparative quantitative gene expression analysis in MSCs derived from equine bone marrow and adipose tissue.

Antioxidant effects of selenocysteine on replicative senescence in human adipose-derived mesenchymal stem cells

  • Suh, Nayoung;Lee, Eun-bi
    • BMB Reports
    • /
    • v.50 no.11
    • /
    • pp.572-577
    • /
    • 2017
  • In most clinical applications, human mesenchymal stem cells (hMSCs) are expanded in large scale before their administration. Prolonged culture in vitro results in cellular senescence-associated phenotypes, including accumulation of reactive oxygen species (ROS) and decreased cell viabilities. Profiling of stem cell-related genes during in vitro expansion revealed that numerous canonical pathways were significantly changed. To determine the effect of selenocysteine (Sec), a rare amino acid found in several antioxidant enzymes, on the replicative senescence in hMSCs, we treated senescent hMSCs with Sec. Supplementation of Sec in the culture medium in late-passage hMSCs reduced ROS levels and improved the survival of hMSCs. In addition, a subset of key antioxidant genes and Sec-containing selenoproteins showed increased mRNA levels after Sec treatment. Furthermore, ROS metabolism and inflammation pathways were predicted to be downregulated. Taken together, our results suggest that Sec has antioxidant effects on the replicative senescence of hMSCs.

Possibility of Undifferentiated Human Thigh Adipose Stem Cells Differentiating into Functional Hepatocytes

  • Lee, Jong Hoon;Lee, Kuk Han;Kim, Min Ho;Kim, Jun Pyo;Lee, Seung Jae;Yoon, Jinah
    • Archives of Plastic Surgery
    • /
    • v.39 no.6
    • /
    • pp.593-599
    • /
    • 2012
  • Background This study aimed to investigate the possibility of isolating mesenchymal stem cells (MSCs) from human thigh adipose tissue and the ability of human thigh adipose stem cells (HTASCs) to differentiate into hepatocytes. Methods The adipose-derived stem cells (ADSCs) were isolated from thigh adipose tissue. Growth factors, cytokines, and hormones were added to the collagen coated dishes to induce the undifferentiated HTASCs to differentiate into hepatocyte-like cells. To confirm the experimental results, the expression of hepatocyte-specific markers on undifferentiated and differentiated HTASCs was analyzed using reverse transcription polymerase chain reaction and immunocytochemical staining. Differentiation efficiency was evaluated using functional tests such as periodic acid schiff (PAS) staining and detection of the albumin secretion level using enzyme-linked immunosorbent assay (ELISA). Results The majority of the undifferentiated HTASCs were changed into a more polygonal shape showing tight interactions between the cells. The differentiated HTASCs up-regulated mRNA of hepatocyte markers. Immunocytochemical analysis showed that they were intensely stained with anti-albumin antibody compared with undifferentiated HTASCs. PAS staining showed that HTASCs submitted to the hepatocyte differentiation protocol were able to more specifically store glycogen than undifferentiated HTASCs, displaying a purple color in the cytoplasm of the differentiated HTASCs. ELISA analyses showed that differentiated HTASCs could secrete albumin, which is one of the hepatocyte markers. Conclusions MSCs were islolated from human thigh adipose tissue differentiate to heapatocytes. The source of ADSCs is not only abundant abdominal adipose tissue, but also thigh adipose tissue for cell therapy in liver regeneration and tissue regeneration.

Use of adipose-derived stem cells in lymphatic tissue engineering and regeneration

  • Forte, Antonio Jorge;Boczar, Daniel;Sarabia-Estrada, Rachel;Huayllani, Maria T.;Avila, Francisco R.;Torres, Ricardo A.;Guliyeva, Gunel;Aung, Thiha;Quinones-Hinojosa, Alfredo
    • Archives of Plastic Surgery
    • /
    • v.48 no.5
    • /
    • pp.559-567
    • /
    • 2021
  • The potential to differentiate into different cell lines, added to the easy and cost-effective method of extraction, makes adipose-derived stem cells (ADSCs) an object of interest in lymphedema treatment. Our study's goal was to conduct a comprehensive systematic review of the use of ADSCs in lymphatic tissue engineering and regeneration. On July 23, 2019, using PubMed/MEDLINE, Cochrane Clinical Answers, Cochrane Central Register of Controlled Trials, and Embase databases, we conducted a systematic review of published literature on the use of ADSCs in lymphatic tissue engineering and regeneration. There were no language or time frame limitations, and the following search strategy was applied: ((Adipose stem cell) OR Adipose-derived stem cell)) AND ((Lymphedema) OR Breast Cancer Lymphedema). Only original research manuscripts were included. Fourteen studies fulfilled the inclusion criteria. Eleven studies were experimental (in vitro or in vivo in animals), and only three were clinical. Publications on the topic demonstrated that ADSCs promote lymphangiogenesis, and its effect could be enhanced by modulation of vascular endothelial growth factor-C, interleukin-7, prospero homeobox protein 1, and transforming growth factor-β1. Pilot clinical studies included 11 patients with breast cancer-related lymphedema, and no significant side effects were present at 12-month follow-up. Literature on the use of ADSCs in lymphatic tissue engineering and regeneration demonstrated promising data. Clinical evidence is still in its infancy, but the scientific community agrees that ADSCs can be useful in regenerative lymphangiogenesis. Data collected in this review indicate that unprecedented advances in lymphedema treatment can be anticipated in the upcoming years.

Modulation of osteoblastic/odontoblastic differentiation of adult mesenchymal stem cells through gene introduction: a brief review

  • Kim, Ji-Youn;Kim, Myung-Rae;Kim, Sun-Jong
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.39 no.2
    • /
    • pp.55-62
    • /
    • 2013
  • Bone tissue engineering is one of the important therapeutic approaches to the regeneration of bones in the entire field of regeneration medicine. Mesenchymal stem cells (MSCs) are actively discussed as material for bone tissue engineering due to their ability to differentiate into autologous bone. MSCs are able to differentiate into different lineages: osteo/odontogenic, adipogenic, and neurogenic. The tissue of origin for MSCs defines them as bone marrow-derived stem cells, adipose tissue-derived stem cells, and, among many others, dental stem cells. According to the tissue of origin, DSCs are further stratified into dental pulp stem cells, periodontal ligament stem cells, stem cells from apical papilla, stem cells from human exfoliated deciduous teeth, dental follicle precursor cells, and dental papilla cells. There are numerous in vitro/in vivo reports suggesting successful mineralization potential or osteo/odontogenic ability of MSCs. Still, there is further need for the optimization of MSCs-based tissue engineering methods, and the introduction of genes related to osteo/odontogenic differentiation into MSCs might aid in the process. In this review, articles that reported enhanced osteo/odontogenic differentiation with gene introduction into MSCs will be discussed to provide a background for successful bone tissue engineering using MSCs with artificially introduced genes.

The Effect of Human Adipose Tissue Derived Mesenchymal Stem Cells and Growth Hormone on the Recovery of Neurological Deficits due to Experimental Spinal Cord Injury in Rat (최근 척수손상 백서에서 인체지방조직유래 중간엽 줄기세포 이식 및 성장호르몬의 투여가 신경회복에 미치는 영향)

  • Lee, Keun Cheol;Moon, In Sun;Heo, Jung;Kwon, Yong Seok;Kim, Seok Kwun;Son, Hee Dong
    • Archives of Plastic Surgery
    • /
    • v.35 no.1
    • /
    • pp.13-19
    • /
    • 2008
  • Purpose: Human adipose tissue-derived mesenchymal stem cells(hATSCs) can be differentiated into multiple mesenchymal lineages, including bone, cartilage, and muscle. And growth hormone play important roles in the normal growth and development of the CNS. In this study, we explored whether the transplanted hATSCs and growth hormones could improve functional recoveries from rats with contusive spinal cord injury. Methods: We divided 30 female rats, which were subjected to a weight driven implant spinal cord injury, into 3 groups with 10 rats each; Group A as a control group, group B with hATSCs transplantation on injured region, and group C with hATSCs transplantation and GH administration for 7 days. Then, we researched their neurologic functional recoveries before and 2, 4, and 8 weeks after transplantation using Basso-Beattie-Bresnahan (BBB) locomotor rating scale. And we checked Y-chromosome positive cells by FISH(Fluorescent in situ hybridization) to identify the survival of transplanted mesenchymal stem cells. Results: After 4 weeks of transplantation, the group B and group C showed significant improvement of neurologic function on BBB locomotor rating scale in comparison with the group A(Group A: $13.1{\pm}0.58$, Group B: $14.6{\pm}0.69$, Group C: $14.9{\pm}0.56$). Moreover, the group C displayed meaningful recovery of neurologic function after 8 weeks in comparison with group B (Group B: $15.7{\pm}0.63$, Group C: $16.5{\pm}1.14$). The group A, the control one, improved for 5 weeks after injury, and had no more recovery. On the other hand, Group B and C showed the improvement of neurologic function continuously for 9 weeks after injury. Conclusion: In this study, we found out that hATSCs transplantation have an effect on neurologic functional recovery of spinal cord injured rat and GH injection seems to bring the synergistic results on this good tendency.

Synergistic Effect of Hydrogen and 5-Aza on Myogenic Differentiation through the p38 MAPK Signaling Pathway in Adipose-Derived Mesenchymal Stem Cells

  • Wenyong Fei;Erkai Pang;Lei Hou;Jihang Dai;Mingsheng Liu;Xuanqi Wang;Bin Xie;Jingcheng Wang
    • International Journal of Stem Cells
    • /
    • v.16 no.1
    • /
    • pp.78-92
    • /
    • 2023
  • Background and Objectives: This study aims to clarify the systems underlying regulation and regulatory roles of hydrogen combined with 5-Aza in the myogenic differentiation of adipose mesenchymal stem cells (ADSCs). Methods and Results: In this study, ADSCs acted as an in vitro myogenic differentiating mode. First, the Alamar blue Staining and mitochondrial tracer technique were used to verify whether hydrogen combined with 5-Aza could promote cell proliferation. In addition, this study assessed myogenic differentiating markers (e.g., Myogenin, Mhc and Myod protein expressions) based on the Western blotting assay, analysis on cellular morphological characteristics (e.g., Myotube number, length, diameter and maturation index), RT-PCR (Myod, Myogenin and Mhc mRNA expression) and Immunofluorescence analysis (Desmin, Myosin and 𝛽-actin protein expression). Finally, to verify the mechanism of myogenic differentiation of hydrogen-bound 5-Aza, we performed bioinformatics analysis and Western blot to detect the expression of p-P38 protein. Hydrogen combined with 5-Aza significantly enhanced the proliferation and myogenic differentiation of ADSCs in vitro by increasing the number of single-cell mitochondria and upregulating the expression of myogenic biomarkers such as Myod, Mhc and myotube formation. The expressions of p-P38 was up-regulated by hydrogen combined with 5-Aza. The differentiating ability was suppressed when the cells were cultivated in combination with SB203580 (p38 MAPK signal pathway inhibitor). Conclusions: Hydrogen alleviates the cytotoxicity of 5-Aza and synergistically promotes the myogenic differentiation capacity of adipose stem cells via the p38 MAPK pathway. Thus, the mentioned results present insights into myogenic differentiation and are likely to generate one potential alternative strategy for skeletal muscle related diseases.

The Efficacy and Safety of Platelet-Rich Plasma and Adipose-Derived Stem Cells: An Update

  • Choi, Jaehoon;Minn, Kyung Won;Chang, Hak
    • Archives of Plastic Surgery
    • /
    • v.39 no.6
    • /
    • pp.585-592
    • /
    • 2012
  • During the past decade, many studies using platelet-rich plasma (PRP) or adipose-derived stem cells (ASCs) have been conducted in various medical fields, from cardiovascular research to applications for corneal diseases. Nonetheless, there are several limitations of practical applications of PRP and ASCs. Most reports of PRP are anecdotal and few include controls to determine the specific role of PRP. There is little consensus regarding PRP production and characterization. Some have reported the development of an antibody to bovine thrombin, which was the initiator of platelet activation. In the case of ASCs, good manufacturing practices are needed for the production of clinical-grade human stem cells, and in vitro expansion of ASCs requires approval of the Korea Food and Drug Administration, such that considerable expense and time are required. Additionally, some have reported that ASCs could have a potential risk of transformation to malignant cells. Therefore, the authors tried to investigate the latest research on the efficacy and safety of PRP and ASCs and report on the current state and regulation of these stem cell-based therapies.