• 제목/요약/키워드: adhesive stress

검색결과 307건 처리시간 0.028초

접착이음의 강도평가에 관한 연구 (제1보 겹치기 접착이음의 응력해석과 파괴강도) (A Study on Strength Evaluation of Adhesive Joints(1st Report, Stress Analysis and Fracture Strength of Adhesive Single-Lap Joint))

  • 정남용
    • 대한기계학회논문집
    • /
    • 제16권4호
    • /
    • pp.667-674
    • /
    • 1992
  • 본 연구에서는 복합재료의 접착이음에 대한 강도 평가법을 확립하기 위한 기 초연구로써 접착이음의 가장기본적인 형태의 하나인 겹치기 이음(single-lap joint: SLJ)에 대한 응력해석과 정적 및 피로 강도시험을 실시하고, 종래의 강도평가법의 문 제점을 파악.검토하고 정량적이고 통일적인 접착이음의 강도평가법의 확립 및 설계 기 준의 설정에 대한 새로운 방향을 모색 하고저 한다.

복합재 연소관의 접착 길이에 따른 체결부의 구조해석 (A Study on the Structural Analysis of Joint Part in Accordance with Adhesive Length of a Composite Rocket Motor Case)

  • 전광우;신광복;황태경
    • 한국추진공학회지
    • /
    • 제16권3호
    • /
    • pp.90-96
    • /
    • 2012
  • 복합재 연소관의 접합 체결부 최적의 설계 길이를 결정하기 위해 접합부 길이변화에 따른 구조해석을 수행하였다. 이때, 접착 체결부의 길이는 50 mm에서 300 mm의 범위를 갖는다. 무응력 상태의 초기 접합부 길이대비 응력구배가 발생하는 않는 구간의 길이를 "응력구배 길이 비"로 정의하고 이를 접착 체결부 길이선정을 위한 평가기준으로 정의하였다. 구조해석 결과 접착 체결부의 길이가 200 mm 이상으로 증가할 경우 응력구배 길이 비의 증가가 서서히 나타남을 확인하였다. 이는, 접착 체결부에 적용되는 2,500 psi 내압에서 구조적 안전성을 확보하는 최적화된 접착 체결부의 길이가 200 mm임을 의미한다.

구조접착 이음에서의 접합강도해석과 초음파실험 (Bonding Strength Analysis and Ultrasonic Testing of Structural Adhesive Joints)

  • 장철섭;오승규;김종현;황영택;이원
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2004년도 추계학술대회 논문집
    • /
    • pp.860-864
    • /
    • 2004
  • This article discusses the use of pulse-echo ultrasonic testing for the stress analysis of adhesive bonds between metal sheets. The method is based on the measurement of the reflection wave at the metal/adhesive interface. After describing briefly the physical aspects of the phenomenon, an index is defined to detect defective zone of the joint(both for the lack of adhesive and for insufficient adhesion); the influence of the experimental variables(variables stress...) on the measurement is discussed. By means of a control experiment it is shown that Stress Variation in Adhesive Joints are separate to be distingguished. In this paper, Quantitative Nondestructive Evaluation in Adhesive Joints are together with Ultrasonic Testing and Finite Element Method.

  • PDF

접착이음의 강도평가에 대한 해석 (Analysis for Strength Estimation of Adhesive Joints)

  • 박성완;이장규
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2004년도 추계학술대회 논문집
    • /
    • pp.98-107
    • /
    • 2004
  • The objectives of this research are to establish the criteria of peel occurrence considering the shape of bond terminus and to compare the strength properties of some adhesive joints. The criteria of feel occurrence at the bond terminus was suggested. Peel loads of some adhesive joint(butt joint, T -shape specimen, single lap joint) were determined from tensile tests. Principal stress distributions of these joints were determined from finite element method analysis. Then, peel occurrence was estimated with intensity of stress singularity ' $K_{prin.}$' when the terminus shape was square, with average principal stress when the terminus shape was rounded. The conclusions are summarized as follows; (1) In the non-filleted model(e.g., butt joint, T-shape specimen), principal stress shows singularity at the bond terminus, intensity of stress(principal stress) singularity ' $K_{prin.}$&apso; can use as the criteria of peel occurrence at the bond terminus. (2) In the filleted model(e.g., single lap joint), principal stress doesn't show singularity at the bond terminus. Average principal stress can use as the criteria of peel occurrence at the bond terminus.'t show singularity at the bond terminus. Average principal stress can use as the criteria of peel occurrence at the bond terminus.

  • PDF

접착이음의 강도평가에 대한 해석 (Analysis for Strength Estimation of Adhesive Joints)

  • 박성완
    • 한국공작기계학회논문집
    • /
    • 제14권5호
    • /
    • pp.62-73
    • /
    • 2005
  • The objects of this research are to establish the criteria of peel occurrence considering the shape of bond terminus and to compare the strength properties of adhesive joint of different three type such as butt joint, T-shape, and single lap Joints. The criteria of peel occurrence at the bond terminus was suggested. Peel loads of three type adhesive joint (butt Joint, T-shape specimen, single lap joint) were determined from tensile tests. Principal stress distributions of these joints were determined from finite element method analysis. Then, peel occurrence was estimated with stress singularity factor$(K_{prin})$ when the terminus shape was square, with average principal stress when the terminus shape was rounded. The conclusions are summarized as follows; (1) In the non-filleted model(e.g., butt joint, T-shape specimen), principal stress shows singularity at the bond terminus, intensity of stress(principal stress) singularity $(K_{prin})$ can use as the criteria of peel occurrence at the bond terminus. (2) In the filleted model(e.g., single lap joint), principal stress has not affected singularity at the bond terminus. Average principal stress$(K_{av})$ can use as the criteria of peel occurrence at the bond terminus.

보 접착 모델을 이용한 게코 접착 시스템의 접착 메커니즘에 대한 연구 (A Study of Adhesive Mechanism of Gecko Adhesion System using Adhesive Beam Contact Model)

  • 김원배;조맹효
    • 한국전산구조공학회논문집
    • /
    • 제23권4호
    • /
    • pp.403-407
    • /
    • 2010
  • 게코 접착 시스템은 보(beam)의 형상을 가지는 seta와 접착패드 역할을 하는 spatula로 구성된다. 본 논문에서는 보 접착 모델(ahhesive beam contact model)을 사용하여 게코(gecko) 접착 시스템의 접착 메커니즘의 해석을 수행한다. 보 접착 모델은 접촉면에서 불균일한 응력 분포를 가지는 특징이 있으며, 접촉면에서의 최대 인장 응력(tensile stress)에 의하여 접착/분리 메커니즘이 결정된다. 접착패드 역할을 하는 spatula는 최대 인장응력을 감소시키는 역할을 하며, 이로 인해 접착력이 증가한다. 역방향 하중에 대해서는 spatula에 의하여 최대 압축 응력(compressive stress)이 감소하며, 이러한 현상에 의하여 접착력과 분리력의 비대칭성이 발생한다. 본 연구에서는 보 접착 모델의 해석을 위해 유한요소법(Finite Element Method)을 사용되며, spatula effect를 위한 해석 결과가 제시된다.

WAVY LAP JOINT 응력 해석 (Stress Analysis Of Wavy Lap Joint)

  • 김위대;양승희
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2000년도 추계학술발표대회 논문집
    • /
    • pp.216-219
    • /
    • 2000
  • The adhesive bonded single-lap joint is due to its intrinsic load eccentricity problem, severe peel stresses concentration occur at both end of the joint. In this paper, new lap-joint is designed to avoid the singular peel stress, and to compare the stresses of the middle adhesive layer between the single-lap joint and the wavy-lap joint. Two adherend lay-up, i.e., [90/0/90/0]$_{2s}$ and [0/90/0/90]$_{2s}$ were consider in the study.

  • PDF

경화 압력이 접착 조인트의 비틀림 피로 특성에 미치는 영향 (Effects of the curing pressure on the torsional fatigue characteristics of adhesively bonded joints)

  • 황희윤;김병중;이대길
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 추계학술대회
    • /
    • pp.196-201
    • /
    • 2004
  • Adhesive joints have been widely used for fastening thin adherends because they can distribute the load over a larger area than mechanical joints, require no hole, add very little weight to the structure and have superior fatigue resistance. However, the fatigue characteristics of adhesive joints are much affected by applied pressure during curing operation because actual curing temperature is changed by applied pressure and the adhesion characteristics of adhesives are very sensitive to manufacturing conditions. In this study, cure monitoring and torsional fatigue tests of adhesive joints with an epoxy adhesive were performed in order to investigate the effects of the applied pressure during curing operation. From the experiments, it was found that the actual curing temperature increased as the applied pressure increased, which increased residual thermal stress in the adhesive layer. Therefore, the fatigue life decreased as the applied pressure increased because the mean stress during fatigue tests increased due to the residual thermal stress.

  • PDF

보강재로 보수된 균열평판의 파괴역학적 해석(II)-분리 영향에 대한 연구- (Fracture Mechanics Analysis of Cracked Plate Repaired by Patch(II) - The Analysis of Debonding Effect -)

  • 정기현;양원호;조명래
    • 대한기계학회논문집A
    • /
    • 제24권9호
    • /
    • pp.2246-2251
    • /
    • 2000
  • Adhesive bonding repair methods has been used for a number of decades for construction of damaged structures. In order to evaluate the life of cracked aging aircraft structures, the repair technique which uses adhesively bonded boron/epoxy composite patches is being widely considered as a cost-effective and reliable method. But, this repair method contains many shortcomings. One of these shortcomings, debonding is major issue. When the adhesive shear stress increases, debonding is caused at the end of patch and plate interface. And this debonding is another defect except cracks propagation. In this paper, we assess safety at the cracked AI-plate repaired by Br/Epoxy composite patch. Firstly, from the view of fracture mechanics, reduction of stress intensity factors is determined by the variety of patch feature. Secondly, using the elastic analysis and finite element analysis, the distribution of adhesive shear stresses is acquired. Finally, The problem of how to optimize the geometric configurations of the patch has been discussed.

접착층내 결함이 계면균열의 응력확대계수에 미치는 영향 평가 (Effect Evaluation of Hole Defects in Adhesive on SIF of Interface Crack)

  • 현철승;허성필;양원호;류명해
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 추계학술대회논문집A
    • /
    • pp.299-303
    • /
    • 2001
  • Adherend-adhesive interface failure will occur on a macroscale when surface preparation or material quality are poor. It is well known that the stress singularity occurs at the edges of interface between the adhernds and the adhesive, and that crack will initiate from these positions. Also if bubbles are created and remained in the adhesive layer during the bonding process, the stress concentrates around these hole defects. In this paper, the effects of the hole defects on the SIF of interface crack were examined. From results, SIF increased with the hole defects near the interface crack and increased with an decreae in the upper adherend thickness, an increase in the center adhesive thickness.

  • PDF