• Title/Summary/Keyword: adhesive shear test

Search Result 264, Processing Time 0.027 seconds

Plate Separation (에폭시 접착강판으로 보강된 철근콘크리트 보의 강판단부의 거동특성)

  • 신영수;최완철;홍기섭;홍영균
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1994.10a
    • /
    • pp.374-379
    • /
    • 1994
  • This paper deals with the problem of plate separation and anchorage at the ends of steel plates strengthened by EBSP. Test results show that the reinforced concrete beams strengthened by EBSP occurs the premature failure without the beams achieving their full flexural strength at the end of plates. The premature failure is the cause of stress concentrations in the adhesive layer of plate, reinforced concrete incase of lack of plate length. Then a simple, approximate procedure for predicting the shear and normal stress concentrations is investigated by Robert's the ory based on partial interaction theory. The theoretical results are compared, and show close agreement with test results. A method is derived for determining the plate length that prevents the premature anchorage zone failure

  • PDF

Comparison of Mechanical and Interfacial Properties on Chemical Structures of Acrylic and Epoxy Adhesives (아크릴 및 에폭시 접착제의 화학적 구조에 따른 유리섬유 복합재료의 기계적 및 계면 물성 변화 평가)

  • Shin, Pyeong-Su;Kim, Jong-Hyun;Choi, Jin-Yeong;Kwon, Dong-Jun;Lee, Sang-Il;Park, Joung-Man
    • Composites Research
    • /
    • v.29 no.2
    • /
    • pp.79-84
    • /
    • 2016
  • An adhesive can be used to connect two different materials in structures. In comparing with other connecting methods, such as bolt, rivet, and hot melting, the adhesive does not need to use them. It leads to reduce the weight and decrease the stress concentration along the connecting line. This work studied the comparison of mechanical and interfacial properties of commonly-used two adhesives, acrylic type and bisphenol-A epoxy type. Tensile and flexural strength of neat adhesives were also compared. Lap shear test of two adhesives was deduced from the measurement of tensile and fatigue tests. After testing, the failure patterns of adhesive surfaces were observed by a microscope. Tensile strength and mechanical fatigue resistance at using bisphenol-A epoxy adhesive were better than acrylic adhesive. Also adding CNT reinforcement in epoxy adhesive can anticipate mechanical improvement.

Evaluation of Adhesive Strength for Nano-Structured Thin Film by Scanning Acoustic Microscope (초음파 현미경을 이용한 나노 박막의 접합 강도 평가)

  • Park, Tae-Sung;Kwak, Dong-Ryul;Park, Ik-Keun;Miyasaka, Chiaki
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.32 no.4
    • /
    • pp.393-400
    • /
    • 2012
  • In recent years, nano-structured thin film systems are often applied in industries such as MEMS/NEMS device, optical coating, semiconductor or like this. Thin films are used for many and varied purpose to provide resistance to abrasion, erosion, corrosion, or high temperature oxidation and also to provide special magnetic or dielectric properties. Quite a number of articles to evaluate the characterization of thin film structure such as film density, film grain size, film elastic properties, and film/substrate interface condition were reported. Among them, the evaluation of film adhesive to substrate has been of great interest. In this study, we fabricated the polymeric thin film system with different adhesive conditions to evaluate the adhesive condition of the thin film. The nano-structured thin film system was fabricated by spin coating method. And then V(z) curve technique was applied to evaluate adhesive condition of the interface by measuring the surface acoustic wave(SAW) velocity by scanning acoustic microscope(SAM). Furthermore, a nano-scratch technique was applied to the systems to obtain correlations between the velocity of the SAW propagating within the system including the interface and the shear adhesive force. The results show a good correlation between the SAW velocities measured by acoustic spectroscope and the critical load measured by the nano-scratch test. Consequently, V(z) curve method showed potentials for characterizing the adhesive conditions at the interface by acoustic microscope.

Modified laser etching technique of enamel for bracket bonding (브라켓 부착을 위한 변형된 레이저 부식법)

  • Yun, Min-Sung;Lee, Sang-Min;Yang, Byung-Ho
    • The korean journal of orthodontics
    • /
    • v.40 no.2
    • /
    • pp.87-94
    • /
    • 2010
  • Objective: Many studies have carried out research on comparisons between laser etching and conventional etching systems to investigate methods of reinforcing shear bond strength. The purposes of this study were to assess the efficiency of bonding with erbium, chromium doped: yttrium-scandium-gallium-garnet (Er,Cr:YSGG) laser etching combined with the conventional etching technique. Methods: Sixty-four sound premolars, extracted for orthodontic purposes, were randomly divided into 4 groups and treated in the following manner. First group, conventional etching of 37% phosphoric acid for 15 seconds (control); second group, 1.5 W laser etching for 10 seconds followed by conventional etching; third group, conventional etching followed by 1.5 W laser etching; fourth group, 1.5 W laser etching for 15 seconds only. We assessed the shear bond strength, the surface characteristics, and the adhesive remnant index scores between all groups. Results: Experimental groups showed higher shear bond strength than the control group. But no statistically significant differences were found between the second and third groups. Adhesive remnant scores were compared with the Kruskal-Wallis test, and no statistically significant differences were found between all groups. Conclusions: To obtain maximum shear bonding strength, a combined technique of Er,Cr:YSGG and 37% phosphoric acid is useful even though it may be inconvenient.

A Comparison of shear Bonding Strength with Polyacrylic acid and Phosphoric acid Enamel Surface Conditioning (폴리아크릴산과 인산으로 법랑질표면 처리후 전단결합강도의 비교)

  • Roh, Joung-Sub;Kim, Sang-Cheol
    • The korean journal of orthodontics
    • /
    • v.32 no.1 s.90
    • /
    • pp.51-57
    • /
    • 2002
  • The purpose of this study was to compare in vitro shear bonding strength with three different enamel surface preparations (1) 30% sulfated polyacrylic acid with 0.3M lithium sulfate (2) 40% sulfated polyacrylic acid with 0.3M lithium sulfate (3) 37% phosphoric acid. 105 extracted human premolar teeth were divided into each three groups of 35. Metal brackets were bonded to teeth in the three groups. The same self curing resin was used for all groups. A shearing force was applied to the teeth. After debonding, bases of bracket and enamel surfaces were examined under steroscopic microscope to determine the failure modes. Statistical analysis of the data was carried out with one way ANOVA and Student t- test. The results were as follows. 1. Shear bond strength values for the 30% polyacrylic acid and 40% polyacrylic acid group were approximately two thirds of the phosphoric acid group. It maintains clinically acceptable but not enough bond strength. 2. There was no statistically significant difference in shear bond strengths between 30% and 40% polyacrylic acid group. 3. The failure modes of brackets had some differences. In polyacrylic acid groups, the percentage of adhesive/enamel failure was higher than that of adhesive/ bracket interface failure. On the contrary in phosphoric acid groups, the results were reversed. Further study of bond strength could be required. If polyacrylic acid enamel conditioning is used clinically.

Corrosion Assessment of Al/Fe Dissimilar Metal Joint (Al/Fe 이종금속 접합부의 부식특성)

  • Kang, Minjung;Kim, Cheolhee;Kim, Junki;Kim, Dongcheol;Kim, Jonghoon
    • Journal of Welding and Joining
    • /
    • v.32 no.4
    • /
    • pp.55-62
    • /
    • 2014
  • The use of light-weight Al alloys in the automotive industry is increasing to meet requirements for fuel efficiency and emission reduction. Joining Al alloy to the conventional steel sheet is also very important issue with the increased use of Al alloy, and several joining processes have been introduced to enhance joining strength between dissimilar metals. This paper deals with a galvanic corrosion in the dissimilar metal joining. Salt spray tests up to 2000 hours were conducted on a self-piercing rivet, spot welded, adhesive bonded and weld-bonded joints, and cross-sections and tensile shear strength according the salt spray duration were analyzed at every 500-hour. Self-piercing rivet joint had relative low initial strength but the joint strength did not change regardless of the salt spray duration. The strength of other joints (spot welded, adhesive bonded and weld-bonded joints) decreased with the increase of salt spray duration and the corrosion behaviour of each joint was discussed.

Analysis on the Bonded Single Lap-Joint Containing the Interface Edge Crack (에지계면균열을 갖는 단순겹치기 접착이음의 강도평가)

  • Yoo, Young-Chul;Park, Jung-Hwan;Lee, Won
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.6
    • /
    • pp.159-166
    • /
    • 1998
  • The problem of interface crack in the bonded structures has received a great deal of attention in recent years. In this paper the aluminum bonded single lap-joint containing the interface edge crack is investigated. The tensile load and the average shear stress of the adhesive joints which have different crack length are obtained from the static tensile tests. The critical value of crack length to provoke the interface fracture is determined to a/L=0.4, where a is the interface crack length and L is the adhesive lap-length. The fracture mechanical parameters are introduced to confirm the existence of the critical crack length. The compliance and the stress intensity factors are calculated using the displacement and the stress near the interface crack tip by the boundary element method. These numerical results support the experimental results that the critical value of a/L is 0.4. It is known that the compliance and the stress intensity factors are the efficient parameters to estimate the bonded single lap-joint containing the interface edge crack.

  • PDF

Effect of various intraoral repair systems on the shear bond strength of composite resin to zirconia

  • Han, In-Hae;Kang, Dong-Wan;Chung, Chae-Heon;Choe, Han-Cheol;Son, Mee-Kyoung
    • The Journal of Advanced Prosthodontics
    • /
    • v.5 no.3
    • /
    • pp.248-255
    • /
    • 2013
  • PURPOSE. This study compared the effect of three intraoral repair systems on the bond strength between composite resin and zirconia core. MATERIALS AND METHODS. Thirty zirconia specimens were divided into three groups according to the repair method: Group I-CoJet$^{TM}$ Repair System (3M ESPE) [chairside silica coating with $30{\mu}m$ $SiO_2$ + silanization + adhesive]; Group II-Ceramic Repair System (Ivoclar Vivadent) [etching with 37% phosphoric acid + Zirconia primer + adhesive]; Group III-Signum Zirconia Bond (Heraus) [Signum Zirconia Bond I + Signum Zirconia Bond II]. Composite resin was polymerized on each conditioned specimen. The shear bond strength was tested using a universal testing machine, and fracture sites were examined with FE-SEM. Surface morphology and wettability after surface treatments were examined additionally. The data of bond strengths were statistically analyzed with one-way ANOVA and Tamhane post hoc test (${\alpha}$=.05). RESULTS. Increased surface roughness and the highest wettability value were observed in the CoJet sand treated specimens. The specimens treated with 37% phosphoric acid and Signum Zirconia Bond I did not show any improvement of surface irregularity, and the lowest wettability value were found in 37% phosphoric acid treated specimens. There was no significant difference in the bond strengths between Group I ($7.80{\pm}0.76$ MPa) and III ($8.98{\pm}1.39$ MPa). Group II ($3.21{\pm}0.78$ MPa) showed a significant difference from other groups (P<.05). CONCLUSION. The use of Intraoral silica coating system and the application of Signum Zirconia Bond are effective for increasing the bond strength of composite resin to zirconia.

Effect of zirconia surface treatment using nitric acid-hydrofluoric acid on the shear bond strengths of resin cements

  • Cho, Jin Hyung;Kim, Sun Jai;Shim, June Sung;Lee, Keun-Woo
    • The Journal of Advanced Prosthodontics
    • /
    • v.9 no.2
    • /
    • pp.77-84
    • /
    • 2017
  • PURPOSE. The aim of this study was to compare the surface roughness of zirconia when using Zircos E etching system (ZSAT), applying a nitric acid-hydrofluoric acid compound as a pretreatment agent, and also to compare the shear bonding strength according to different resin cements. MATERIALS AND METHODS. ZSAT, air abrasion, and tribochemical silicacoating were applied on prepared 120 zirconia specimens (10 mm in diameter, 7 mm in height) using CAD/CAM. Each 12 specimens with 4 different resin cements (Panavia F 2.0, Rely X Unicem, Superbond C&B, and Hot bond) were applied to test interfacial bond strength. The statistical analysis was performed using SAS 9.1 (SAS Institute Inc., Cary, NC, USA). The results are as follows: after application of the ZSAT on the zirconia specimens, surface roughness value after 2-hour etching was higher than those after 1- and 3-hour etching on SEM images. RESULTS. For Superbond C&B and Rely X Unicem, the specimens treated with ZSAT showed higher shear bond strength values than those treated with air abrasion and tribochemical silicacoating system. Regarding the failure mode of interface over cement and zirconia surface, Rely X Unicem and Hot bond showed cohesive failures and Panavia F 2.0 and Superbond C&B showed mixed failures. CONCLUSION. Zircos E etching system in zirconia restoration could increase its shear bond strength. However, its long term success rate and clinical application should be further evaluated.

Does the time interval after bleaching influence the adhesion of orthodontic brackets?

  • Nascimento, Glaucia Cristina Rodrigues;Miranda, Cyndi Albuquerque De;Machado, Sissy Maria Mendes;Brandao, Gustavo Antonio Martins;Almeida, Haroldo Amorim De;Silva, Cecy Martins
    • The korean journal of orthodontics
    • /
    • v.43 no.5
    • /
    • pp.242-247
    • /
    • 2013
  • Objective: To test the null hypothesis that no difference exists between the effects of at-home bleaching and in-office bleaching on shear bond strength (SBS) with bracket bonding at 4 different time intervals after dental bleaching. Methods: Ninety extracted human premolars were randomly divided into 9 groups (n = 10) according to the bleaching methods used (at-home bleaching and in-office bleaching) and the storage time in artificial saliva (30 min, 1 day, 2 weeks, and 3 weeks before bonding). The control group was stored in artificial saliva for 7 days. Brackets were bonded with the Transbond XT adhesive system, and SBS testing was performed. The adhesive remnant index (ARI) was used to assess the amount of resin remaining on the enamel surfaces after debonding. The SBS data were analyzed by analysis of variance (ANOVA) and the Tukey test. For the ARI, the Kruskal-Wallis test was performed. Significance for all statistical tests was predetermined to be p < 0.05. Results: The SBS of the unbleached group was significantly higher (p < 0.05) than that of the bleached groups (except for the group bonded 30 min after at-home bleaching). Conclusions: The null hypothesis was not totally rejected. All bleaching groups tested had decreased SBS of the brackets to the enamel, except for the group bonded 30 min after at-home bleaching. The SBS returned to values close to those of the unbleached enamel within 3 weeks following bleaching.