• Title/Summary/Keyword: adhesive film

Search Result 310, Processing Time 0.023 seconds

Hardness and adhesion of the reactively sputtered Zr-ZrN on the stainless steel(SUS304) and tool steel(SKH9) (스테인레스와 공구강 위에 스퍼터링된 Zr-ZrN 코팅층의 경도 및 밀착성에 대한 연구)

  • 예길촌;신현준;권식철;백원승
    • Journal of the Korean institute of surface engineering
    • /
    • v.26 no.6
    • /
    • pp.316-326
    • /
    • 1993
  • Adhesion and hardeness are the most important properties of a hard coated layer which is applied to wear-resistant devices. Zr/ZrN layer was deposited on tool steel(SKH9) and stainless steel(SUS304) by a re-active D.C. magnetron sputtering technique and their microhardness and adhesion strength were measured for the films processed by changing the partial pressures of $N_2$ gas (4~10$\times$$10^{-4}$mbar) and the substrate bias voltage(0~250V). The adhesion strength was evaluated by acoustic signals through the scratch-test with the incremental applied load. As the partial pressure of $N_2$ gas and the substrate bias voltage were increased, the adhesion strength of tool steel was observed to be stronger than that of the stainless steel. The adhesion strength was generally, observed to decrease with the same tendency regardless of the kinds of substrates. The adhesion strength of tool steel was increased more and more strongly than that of stainless steel as heat-treated temperature was increased. The strength of tool steel was appeared to be high adhesion strength at $400^{\circ}C$. From the failure mode of the film during the scratch adhesion test, the cohesive failure was observed to be obvious and the adhesive failure in a minor portion in the Zr/ZrN doublelayer regardless of the kinds of substrates.

  • PDF

A Study on Characteristics of TiN Thin Films Deposited by Unbalanced Magnetron Sputtering Method for the Application of Diffusion Barrier Layers in Displays (디스플레이 확산 방지층 응용을 위한 비대칭 마그네트론 스퍼터로 증착된 질화 티타늄 박막의 특성에 대한 연구)

  • Park, Yong Seob
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.32 no.2
    • /
    • pp.129-133
    • /
    • 2019
  • TiN thin films were fabricated using an unbalanced magnetron sputtering (UBMS) system, and their structure and surface characteristics as well as their optical and tribological properties were evaluated. The hardness, elastic modulus, adhesive force, surface roughness, and transmittance of the Ti thin films fabricated using the UBMS system were 11.5 GPa, 103 GPa, 27.5 N, 2.45 nm and 20%, respectively. The TiN films prepared with various proportions of nitrogen as the reaction gas exhibited maximum values for the hardness, elastic modulus, critical load, RMS roughness and transmittance of approximately 19.2 GPa, 182 GPa, 27.3 N, 0.98 nm, and 85%, respectively. Moreover, the TiN thin film fabricated under the condition of 30 sccm nitrogen gas showed the optimal physical properties. In summary, the TiN thin films fabricated using the UBMS system exhibited excellent hardness, elastic modulus, adhesion, and smooth surface in addition to good hydrophilic properties.

Fatigue Resistance Improvement of Welded Joints by Bristle Roll-Brush Grinding

  • Kim, In-Tae;Kim, Ho-Seob;Dao, Duy Kien;Ahn, Jin-Hee;Jeong, Young-Soo
    • International journal of steel structures
    • /
    • v.18 no.5
    • /
    • pp.1631-1638
    • /
    • 2018
  • In the periodic repainting of steel bridges, often the steel surface has to be prepared by using power tools to remove surface contaminants, such as deteriorated paint film and rust, and to increase the adhesive strengths of the paint films to be applied newly. Surface preparation by bristle roll-brush grinding, which is a type of power tool, may additionally introduce compressive residual stress and increase the fatigue resistance of welded joints owing to the impact of rotating bristle tips. In this study, fatigue tests were conducted for longitudinally out-of-plane gusset fillet welded joints and transversely butt-welded joints to evaluate the effect of bristle roll-brush grinding prior to repainting on the fatigue resistance of the welded joints. The test results showed that bristle roll-brush grinding introduced compressive residual stress and significantly increased fatigue limits by over 50%.

MODIFICATION OF INITIALLY GROWN BN LAYERS BY POST-N$^{+}$ IMPLANTATION

  • Byon, E-S.;Lee, S-H.;Lee, S-R.;Lee, K-H.;Tian, J.;Youn, J-H.;Sung, C.
    • Journal of the Korean institute of surface engineering
    • /
    • v.32 no.3
    • /
    • pp.351-355
    • /
    • 1999
  • BN films with a high content of cubic phase has been deposited by a variety of techniques. It is well known that c-BN films grow with a unique microstructure consisting of $sp^2$ and $sp^{3-}$ bonded layers. Because of existence of the initially grown $sp^{2-}$ /bonded layer, BN films are not adhesive to the substrates. In this study, post-N$^{+ }$ / implantation was applied to improve the adhesion of the films. A Monte Carlo program TAMIX was used to simulate this modification process. The simulation showed nitrogen concentration profile at $1200\AA$ in depth in case of 50keV -implantation energy. FTIR spectra of the $N^{+}$ implanted specimens demonstrated a strong change of absorption band at 1380 cm$^{ -1 }$The films were also investigated by HRTEM. From these results, it is concluded that the post ion implantation could be an effective technique which improves the adhesion between BN film and substrate.

  • PDF

A comparative study on consolidants for bronze objects conservation (청동유물 보존처리에 사용되는 강화처리제의 특성 비교)

  • Cho, Hyun-Kyung;Cho, Nam-Chul
    • Analytical Science and Technology
    • /
    • v.22 no.3
    • /
    • pp.263-271
    • /
    • 2009
  • The purpose of metal artifacts conservation is recovering the original state of objects and preventing it from further corrosion. Four different consolidants are selected that are widely used for bronze objects conservation. This study found out the characteristics of thin film by various experiments and analysis for the bronze plates coated using each solutions. After a series of analysis, resin B and V showed good coating properties. However, the evaluation point suited to this purpose are adhesive strength, stability against yellowing and corrosion resistance. Therefore, resin B of four different consolidants could expect to get the most suitable consolidation effect for consolidation purpose.

Effect of Adhesion Strength Between Flexible Substrates and Electrodes on the Durability of Electrodes (유연 기판과 전극 사이의 접합력이 전극의 내구성에 미치는 영향)

  • Doyeon Im;Byoung-Joon Kim;Geon Hwee Kim;Taechang An
    • Journal of Sensor Science and Technology
    • /
    • v.33 no.2
    • /
    • pp.86-92
    • /
    • 2024
  • Flexible electronic devices are exposed to repeated mechanical deformation; therefore, electrode performance is an important element. Recently, a new technology has been developed to improve the adhesion strength between polymer substrates and metal thin films through the cross-linking reaction of bovine serum albumin (BSA) bioconjugation proteins; however, additional performance evaluation as an electrode is necessary. Therefore, in this study, we investigated the effect of adhesive strength between a flexible substrate and a metal thin film on the performance of a flexible electrode. Cracks and changes in the electrical resistance of the electrode surface were observed through outer bending fatigue tests and tensile tests. As a result of a bending fatigue test of 50,000 cycles and a tensile test at 10% strain, the change in the electrical resistance of the flexible electrode with a high adhesion strength was less than 40%, and only a few microcracks were formed on the surface; thus, the electrical performance did not significantly deteriorate. Through this study, the relationship between the adhesion strength and electrical performance was identified. This study will provide useful information for analyzing the performance of flexible electrodes in the commercialization of flexible electronic devices in the future.

Effect of working time on the film thickness of dental resin cements (레진 시멘트의 혼합 후 시간에 따른 피막도의 변화)

  • Yi, Yu-Seung;Kim, Sung-Hun;Lee, Jai-Bong;Han, Jung-Suk;Yeo, In-Sung;Ha, Seung-Ryong;Kim, Hee-Kyung
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.53 no.4
    • /
    • pp.325-329
    • /
    • 2015
  • Purpose: The aim of this study was to compare the film thicknesses of several resin cements as a function of time after mixing and to examine the effect of working time on the film thicknesses. Materials and methods: The film thickness (${\mu}m$) of 4 resin cements (n=10), 1 composite resin (Panavia F 2.0), 3 self-adhesive resin (Clearfil SA luting, Zirconite, RelyX U200) cements was measured at 20-second intervals after mixing of the cements up to 200 seconds under a load of 50 N. Linear regression was fitted to verify the effect of working time on the film thickness of each cement. Data were compared to the working time recommended by manufacturers using Wilcoxon test ($\alpha$=.05). Results: All of the materials showed a positive linear correlation between the film thickness and working time. There was no statistically significant difference between the working time based on our results and the values recommended by the manufacturers even though there was a discrepancy between those two values. Conclusion: The film thickness of resin cements could increase with the increase of working time. Working time to meet the ISO standard of $50-{\mu}m$ maximum film thickness could be different from the manufacturer's recommended value.

A Study of Copper Electroless Deposition on Tungsten Substrate (텅스텐 기판 위에 구리 무전해 도금에 대한 연구)

  • Kim, Young-Soon;Shin, Jiho;Kim, Hyung-Il;Cho, Joong-Hee;Seo, Hyung-Ki;Kim, Gil-Sung;Shin, Hyung-Shik
    • Korean Chemical Engineering Research
    • /
    • v.43 no.4
    • /
    • pp.495-502
    • /
    • 2005
  • Copper was plated on the tungsten substrate by use of a direct copper electroless plating. The optimum deposition conditions were found to be with a concentration of $CuSO_4$ 7.615 g/L, EDTA of 10.258 g/L, and glyoxylic acid of 7 g/L, respectively. The solution temperature was maintained at $60^{\circ}C$. The pH was varied from 11.0 to 12.8. After the deposition, the properties of the copper film were investigated with X-ray diffractometer (XRD), Field emission secondary electron microscope (FESEM), Atomic force microscope (AFM), X-ray photoelectron spectroscope (XPS), and Rutherford backscattering spectroscope (RBS). The best deposition condition was founded to be the solution pH of 11.8. In the case of 10 min deposition at the pH of 11.8, the grain shape was spherical, Cu phase was pure without impurity peak ($Cu_2O$ peak), and the surface root mean square roughness was about 11 nm. The thickness of the film turned out to be 140 nm after deposition for 12 min and the deposition rate was found to be about 12 nm/min. Increase in pH induced a formation of $Cu_2O$ phase with a long rectangular grain shape. The pH control seems to play an important role for the orientation of Cu in electroless deposition. The deposited copper concentration was 99 atomic percent according to RBS. The resulting Cu/W film yielded a good adhesive strength, because Cu/W alloy forms during electroless deposition.

Characteristics of Electomigration & Surface Hardness about Tungsten-Carbon-Nitrogen(W-C-N) Related Diffusion Barrier (W-C-N 확산방지막의 전자거동(ElectroMigration) 특성과 표면 강도(Surface Hardness) 특성 연구)

  • Kim, Soo-In;Hwang, Young-Joo;Ham, Dong-Shik;Nho, Jae-Kue;Lee, Jae-Yun;Park, Jun;Ahn, Chan-Goen;Kim, Chang-Seong;Oh, Chan-Woo;Yoo, Kyeng-Hwan;Lee, Chang-Woo
    • Journal of the Korean Vacuum Society
    • /
    • v.18 no.3
    • /
    • pp.203-207
    • /
    • 2009
  • Copper is known as a replacement for aluminum wire which is used for semiconductor. Because specific resistance of Cu ($1.67{\mu}{\Omega}$-cm) is lower than that of Al ($2.66{\mu}{\Omega}$-cm), Cu reduce RC delay time. Although melting point of Cu($1085^{\circ}C$) is higher than melting point of Al, Cu have characteristic to easily react with Silicon(Si) in low temperature, and it isn't good at adhesive strength with Si. For above these reason, research of diffusion barrier to prevent reaction between Cu and Si and to raise adhesive strength is steadily advanced. Our study group have researched on W-C-N (tungsten-carbon-nitrogen) Diffusion barrier for preventing diffusion of Cu through semiconductor. By recent studies, It's reported that W-C-N diffusion barrier can even precent Cu and Si diffusing effectively at high temperature. In this treatise, we vaporized different proportion of N into diffusion barrier to research Cu's Electromigration based on the results and studied surface hardness in the heat process using nano scale indentation system. We gain that diffusion barrier containing nitrogen is more stable for Cu's electromigration and has stronger surface hardness in heat treatment process.

Top and Bottom Symmetrical Loop Antenna for Multi-media Devices (멀티미디어단말기용 상하대칭 루프 안테나)

  • Shin, Cheon-Woo
    • Journal of Korea Multimedia Society
    • /
    • v.14 no.3
    • /
    • pp.414-422
    • /
    • 2011
  • The paper is for top and bottom symmetrical phase controlled loop antenna using for multi-media devices. We developed a top and bottom phase control loop pattern arrangement methods for loop antenna in mobile devices like as a cell phone and PCS, WCDMA. In the loop antenna pattern, arrange close adhesive the loop antenna pattern $180^{\circ}$ cycle in wave length, the radiated electro-magnetic wave from close adhesive loop pattern in $180^{\circ}$ become to coherent wave than the phase controlled loop antenna has high efficiency and high radiation gain. To acquire a wide band width on phase controlled loop antenna, we arrange a top and bottom symmetrical architecture loop pattern that bas a $180^{\circ}$ wave length in each layer. Top and bottom each layer bas a U form pattern separated $90^{\circ}$ wave length each other. This architecture cause a well balanced electro-magnetic flow control that acquired wide bandwidth resonance response in loop pattern antenna. In experiment, we designed a WCDMA mobile multi-media antenna in $40mm{\times}6mm$ area thickness 0.2mm, in that passive experiment the radiation efficiency is over 50% and over 0dBi radiation average gain was acquired, in the active experiment in real multi-media device we acquired -4dBi average gain and 43% transmit/receive efficiency.