• Title/Summary/Keyword: adhesive film

Search Result 310, Processing Time 0.021 seconds

A study on forming a spacer for wafer-level CIS(CMOS Image Sensor) assembly (CMOS 이미지 센서의 웨이퍼 레벨 어셈블리를 위한 스페이스 형성에 관한 연구)

  • Kim, Il-Hwan;Na, Kyoung-Hwan;Kim, Hyeon-Cheol;Chun, Kuk-Jin
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.45 no.2
    • /
    • pp.13-20
    • /
    • 2008
  • This paper describes the methods of spacer-fabrication for wafer-level CIS(CMOS Image Sensor) assembly. We propose three methods using SU-8, PDMS and Si-interposer for the spacer-fabrication. For SU-8 spacer, novel wafer rotating system is developed and for PDMS(poly-dimethyl siloxane) spacer, new fabrication-method is used to bond with alignment of glass/PDMS/glass structure. And for Si-interposer, DFR(Dry Film Resist) is used as adhesive layer. The spacer using Si-interposer has the strongest bonding strength and the strength is 32.3MPa with shear.

A Study on Solution Processed Organic Ink by Nozzle Printing Technique (노즐 인쇄기법을 이용한 유기 잉크 용액 공정 연구)

  • Kim, Myong-Ki;Lee, Jungmin;Sung, Dug-Hyung;Kim, Ju-Tae;Kang, Kyungtae
    • Transactions of the KSME C: Technology and Education
    • /
    • v.1 no.2
    • /
    • pp.187-192
    • /
    • 2013
  • Nozzle printing technology has been usually used for adhesive patterning to encapsulate electronic devices. Film formation of functional materials by nozzle printing is a great challenge. The characteristics of nozzle printing of organic ink were investigated systematically in this paper. TAPC as an organic emitting material was used as an ink for nozzle printing experiment to form the patterns in this study. Printed pattern width was increased as the ink flow rate and the printed substrate temperature were increased. The patterns showed a coffee-ring shape.

A Study on Properties by Various Solvents of Acrylic Resin for Iron Artifact Conservation (철제유물 보존처리용 아크릴 수지의 용제별 특성 연구)

  • Cho, Hyun-Kyung;Cho, Nam-Chul
    • Journal of Conservation Science
    • /
    • v.24
    • /
    • pp.43-56
    • /
    • 2008
  • When we consolidate the iron artifacts, only we used VM&P Naphtha as solvent of paraloid NAD10. After consolidating the iron artifacts using paraloid NAD10, artifacts were too glossy to exhibit and see. We choose the solvent YK-VMP as solvent of paraloid NAD10 for complementing this defect and examined characterizations of paraloid NAD10 films in each solvent. As a result of evaluation by several surface analysis such as optical microscope, measuring film thickness, adhesive strength, gloss of surface, contact angle, yellowing test and EIS, it is possible to use YK-VMP instead of VM&P Naphtha as solvent of paraloid NAD10, because YK-VMP lowered surface gloss and did not change the effect of consolidation.

  • PDF

Simulation of Capillary Phenomenon for Solution Coating of High-uniformity Organic thin Films (고균일 유기박막 코팅을 위한 모세관 현상 전산모사)

  • Shin, Dong-Kyun;Hong, Gi-Young;Park, Jong-Woon;Seo, Hwa-Il
    • Journal of the Semiconductor & Display Technology
    • /
    • v.16 no.1
    • /
    • pp.106-111
    • /
    • 2017
  • When a substrate with a pixel-defining layer (bank) is coated, there arises capillary force due to surface tension and adhesive forces between a solvent and the bank layer. It brings in a degradation of film thickness and emission uniformities within pixels. With an attempt to suppress it, we have performed fluid flow simulations of capillary arise by varying the contact angle of bank and the bank structure. We have first demonstrated that the fluid flow model can reproduce the capillary phenomenon that was observed experimentally. It has been found that capillary arise can be suppressed using a hydrophobic material for the bank layer. Furthermore, it was suppressed by tilting the sidewalls outwardly (i.e., using a positive photoresistor). We can obtain very uniform films when the slope is $50^{\circ}$ with the contact angle of $40^{\circ}$.

  • PDF

Fabrication of thin Film Transistor on Plastic Substrate for Application to Flexible Display (Flexible 디스플레이로의 응용을 위한 플라스틱 기판 위의 박막트랜지스터의 제조)

  • 배성찬;오순택;최시영
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.40 no.7
    • /
    • pp.481-485
    • /
    • 2003
  • Amorphous silicon (a-Si:H) based TFT process has been studied at the maximum temperature of 15$0^{\circ}C$ with 25${\mu}{\textrm}{m}$ thick flexible and adhesive tape type polyimide foil substrate, which has benefit on handling a rugged, flexible plastic substrate trough sticking simply it to glass. This paper summarize the process procedure of the TFT on the plastic substrate and shows its electrical characteristics in comparison with glass substrate using primarily the ON/OFF current ratio and the field effect mobility as the quality criterion. The a-SiN:H coating layer played an important role in decreasing surface roughness of plastic substrate, so leakage current of TFT was decreased and mobility was increased. The results show that high quality a-Si:H TFTs can be fabricated on the plastic substrates through coating a rough plastic surface with a-SiN:H.

CrC Interlayer Effect on Tribological Properties of Amorphous Carbon Deposited by UBMS Method (비대칭 마그네트론 스퍼터로 증착된 비정질 탄소박막의 트라이볼로지 특성에서 CrC 삽입층 효과에 대한 연구)

  • Kim, Phil Jung;Park, Yong Seob
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.31 no.7
    • /
    • pp.475-480
    • /
    • 2018
  • We investigated the tribological properties of amorphous carbon (a-C) films deposited with CrC interlayers of various thicknesses as the adhesive layer. A-C and CrC thin films were deposited using the unbalanced magnetron (UBM) sputtering method with graphite and chromium as the targets. CrC films as the interlayer were fabricated under a-C films, and various structural, surface, and tribological properties of a-C films deposited with various CrC interlayer thicknesses were investigated. With various CrC interlayer thicknesses under a-C films, the tribological properties of CrC/a-C films were improved; the increased film thickness exhibited a maximum high hardness of over 27.5 GPa, high elastic modulus of over 242 GPa, critical load of 31 N, residual stress of 1.85 GPa, and a smooth surface below 0.09 nm at the condition of 30-nm CrC thickness.

Role of Oxidants for Metal CMP Applications (금속 CMP 적용을 위한 산화제의 역할)

  • 서용진;김상용;이우선
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.4
    • /
    • pp.378-383
    • /
    • 2004
  • Tungsten is widely used as a plug for the multi-level interconnection structures. However, due to the poor adhesive properties of tungsten(W) on SiO$_2$ layer, the Ti/TiN barrier layer is usually deposited onto SiO$_2$ for increasing adhesion ability with W film. Generally, for the W-CMP(chemical mechanical polishing) process, the passivation layer on the tungsten surface during CMP plays an important role. In this paper, the effect of oxidant on the polishing selectivity of W/Ti/TiN layer was investigated. The alumina(A1$_2$O$_3$)-based slurry with $H_2O$$_2$ as the oxidizer was used for CMP applications. As an experimental result, for the case of 5 wt% oxidizer added, the removal rates were improved and polishing selectivity of 1.4:1 was obtained. It was also found that the CMP characteristics of W and Ti metal layer including surface roughness were strongly dependent on the amounts of $H_2O$$_2$ oxidizer.

Field Emission Enhancement by Electric Field Activation in Screen-printed Carbon Nanotube Film

  • Lee, Hyeon-Jae;Lee, Yang-Doo;Cho, Woo-Sung;Kim, Jai-Kyeong;Hwang, Sung-Woo;Ju, Byeong-Kwon
    • Journal of Information Display
    • /
    • v.6 no.4
    • /
    • pp.45-48
    • /
    • 2005
  • By applying a critical field treatment instead of the conventional surface treatments such as soft rubber roller, ion beam irradiation, adhesive taping, and laser irradiation, electron emission properties of screen-printed carbon nanotubes (CNTs) were enhanced and investigated based on the emission current-voltage characteristics through scanning electron microscopy. After nanotube emitters were activated at the applied electric-field of 2.5 V/um, the electron emission current density with good uniform emission sites reached the value of 2.13 mA/$cm^2$ , which is 400 times higher than that of the untreated sample, and the turn-on voltage decreased markedly from 700 to 460 V. In addition, enhancement of the alignment of CNTs to the vertical direction was observed.

The Resistivity Properties and Adhesive Strength of Cu Thin firms Fabricated by EBE Method (전자빔 증착법으로 제작한 Cu 박막의 부착력과 저항율 특성)

  • Paik, Sang-Bong;Shin, Joong-Hong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.422-426
    • /
    • 2003
  • Cu thin films of $6000{\AA}$ thickness were deposited by Electron Beam Evaporation(EBE) method on the glass. The resistivity properties and adhesion of Cu thin films were investigated by various annealing and substrate temperature. Cu thin films were annealed in the air and vacuum condition for 10 min after the deposition. The resistivity and adhesion(the force required to separate films from substrates) was measured by 4-point probe and scratch testing. The resistivity of non-annealing Cu thin films was distinguished more substrate temperature loot than substrate temperature R.T, $200^{\circ}C$. In the case of air condition annealing, as heating temperature was increased, the resistivity was decreased. In the case of vacuum condition annealing, the resistivity was increased at heating temperature $200^{\circ}C$. The best resistivity($1.72\;{\mu}{\Omega}{\cdot}cm$) of Cu thin films was obtained by the air condition heating temperature $200^{\circ}C$ at the substrate heating temperature $100^{\circ}C$. As a result of scratch testing, adhesion was increased by annealing. And maximum adhesion had 600 gf.

  • PDF

The Effects of Additional Gases(C,H,O) on Adhesive strength Ti$_{x}$N Films Prepared by the DC Magetron Suttering Method (DC Magetron Suttering법으로 제작한 Ti$_{x}$N 박막의 밀착력에 미치는 첨가원소(C,H,O))

  • 김학동;조성식
    • Journal of the Korean institute of surface engineering
    • /
    • v.31 no.3
    • /
    • pp.142-150
    • /
    • 1998
  • Stainless steel is being used widely for various purposes due to its good corrosion resistance. There has been much research to produce colored stainless steel by several methods such as anodizing and ion plating. In this experiment, we coated TiN(C,O,H)films SUS304 substraate with the DC magnetron spttering system made by Leybold Heraeus and studied the interlater structure and abhesive strength of the films as a function of additional gases, acetylene, hydrogen and oxygen. When the acetylene gas was added into the chamber, the specimen with the interlayer phase had good adhesion due to the toughness of the $\gamma'-Fe_4N$ plase induced from a solid solution of carbon atoms, while low adhesion appeared on the specimen of the non interlayer phase. The formation of the interlayer phase($\gamma'-Fe_4N$) was due to hydrogen embrittlement and internal stress induced by $\gamma'-Fe_4N$ formation in the interlayer. We could fine the interlayer phase ($\gamma'-Fe_4N$) at the interface between the film and the substrate of the TEM image when $\gamma'-Fe_4N$ was detected by the X-ray duffraction metheod.

  • PDF