• Title/Summary/Keyword: adhesive bond

Search Result 759, Processing Time 0.023 seconds

Comparison of shear, tensile and shear/tensile combined bonding strengths in bracket base configurations (브라켓 기저부 형태에 따른 전단, 인장, 전단/인장복합결합강도의 비교)

  • Lee, Choon-Bong;Lee, Seong-Ho;Kim, Jong-Ghee
    • The korean journal of orthodontics
    • /
    • v.29 no.5 s.76
    • /
    • pp.599-611
    • /
    • 1999
  • The purpose of this study was to evaluate shear, tensile and shear/tensile combined bond strengths(SBS, TBS, S/TBS) in various orthodontic brackets bonded to human teeth with chemically cured adhesive (Ortho-one, Bisco, USA). Five types of metal brackets with various bracket base configurations (Micro-Loc base(Tomy, Japan), Chessboard base(Daesung, Korea), Non-Etched Foil Mesh base(Dentarum, Germany), Micro-Etched Foil Mesh base(Ortho Organiners, USA), Integral base(Unitek, USA)) were used in this study. Shear, tensile and shear/tensile combined bond strengths according to the direction of force were measured by universal testing machine. The bracket base surface after bond strength test were examined by stereoscope and scanning electron microscope. The assessment of resin remnant on bracket base surface was carried out by ARI(adhesive remnant index). The results obtained were summarized as follows, 1. In all brackets, SBS was in the greatest value(p<0.05), TBS was in 50% level and S/TBS was in 30% level of SBS. 2. In bond strength, Micro-Loc base bracket showed the maximum bond strength($SBS:22.86{\pm}1.37kgf,\;TBS:11.37{\pm}0.42kgf,\;S/TBS:6.69{\pm}0.34kgf$) and Integral base bracket showed the minimum bond strength($SBS:10.52{\pm}1.27kgf,\;TBS:4.27{\pm}1.08kgf,\;S/TBS:2.94{\pm}0.58kgf) (p<0.05). 3. In bond strength per unit area, Integral base bracket showed the minimum value, Micro-Loc base and Chessboard base brackets were in similar value(p>0.05). Non-Etched Foil Mesh base and Micro-Etched Foil Mesh base bracket were similar in SBS and TBS(p>0.05), but Micro-Etched Foil Mesh base bracket was greater than Non-Etched Foil Mesh base bracket in S/TBS(p<0.05). 4. Bond failure sites were mainly between bracket base and adhesive, therefore ARI scores were low.

  • PDF

THE COMPARATIVE STUDY FOR THE SHEAR BOND STRENGTH OF DENTAL ADHESIVES CURED WITH VARIOUS LIGHT SOURCES (다양한 광원으로 중합한 치과용 접착제의 전단강도에 관한 비교 연구)

  • Choi, Nam-Ki;Cho, Seong-Hoon;Kim, Seon-Mi
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.38 no.1
    • /
    • pp.33-41
    • /
    • 2011
  • The objective of this study was to compare the shear bond strengths of five dentin adhesive systems cured with three different light curing sources. Seventy five noncarious permanent teeth were collected and stored in an 0.1% thymol solution at room temperature after extraction. The tested adhesives were: Adper Scotchbond Multi-purpose Plus Adhesive (SM) Adper Single bond 2 (SB), Clearfil SE Bond (SE), Adper Prompt L-Pop (PL), G-Bond (GB). And three light curing unit systems were used: Elipar Free light 2(LED), OptiLux 501 (Halogen), Flipo (PAC). For the shear bonding test, the labial and lingual surfaces of permanent teeth were used. To obtain a flat dentin surface, the labial and lingual surfaces of the teeth were sanded on SiO2 with number 600 grit and then divided into 15 groups of 10 surfaces each. All samples were theromocycled in water $5^{\circ}C$ and $55^{\circ}C$ for 1000 cycles. The results were as follows: 1. When cured with Freelight 2, the shear bond strength of SM was significantly higher than that of PL, GB (p<0.05), whereas no significant difference was found among those of any other bonding agents. 2. When cured with Optilux 501, the shear bond strength of SM was significantly higher than those of any other bonding agents (p<0.05), whereas no singnificant difference was found among those of andy other bonding agents. 3. When cured with Flipo, the shear bond strength of SM was significantly higher than those of SB, SE, GB (p<0.05), whereas no significant differences was found among those of any other bonding agents. 4. For comparison according to three different light cure unit system, except SB and GB, each three dentin bonding agents showed no significant difference. For SB, only Freelight 2 was significantly higher than the others, with no significant difference between Optilux 501 and Flip. For GB, Statistically significant difference was found only between Freelight and Flipo.

EFFECT OF TEMPORARY CEMENT ON TENSILE BOND STRENGTH OF DENTIN BONDING AGENT (Temporary Cement가 상아질 접착제의 접착성능에 미치는 영향)

  • Chang, Heon-Soo;Cho, Kyeu-Zeung
    • Restorative Dentistry and Endodontics
    • /
    • v.20 no.2
    • /
    • pp.685-698
    • /
    • 1995
  • This study was conducted to the effect of temporary cement on the adhesiveness of dentin bonding agent to dentin surface. One hundred freshly extracted bovine mandibular incisors were grinded to expose flat labial dentin surface. The dentin surfaces were temporarized with either eugenol-containing temporary cement(TemBond and Zinc Oxide Eugenol cement) or non-eugenol temporary cement(Nogenol and TempBond NE) for 7days, and then the temporarization was removed with surgical currette and the exposed dentin surfaces were water-rinsed. Bonding specimens were made by use of All-Bond 2 and Super-Bond C&B dentin bonding agent, and stored in $37^{\circ}C$ distilled water for 24hours. The tensile bond strenth and the cohesive failure rate were measured, and then the pretreated dentin surfaces which the temporary cement had been applied to and removed from and the fractured dentin surfaces after bonding test were examined under scanning electron microscope. The results were as follows : In case of bonding with All-Bond 2, tensile bond strength of each experimental group was lower than that of the control group(p<0.05), but there was no significant difference between the bond strengths of the control group and each experimental group in case of bonding with Super-Bond C&B(p>0.05). No significant difference between tensile bond strength of experimental group, whether temporary cement contains eugenol or not, was seen(p>0.05). In case of bonding with All-Bond 2, the control group showed cohesive-adhesive mixed failure mode and the experimental groups mainly showed adhesive failure mode, but in case of bonding with Super-Bond C&B, almost of the control and the experimental groups mainly showed cohesive failure mode. On SEM examination, all of the dentin specimens pretreated with either 10 % phosphoric acid or 10% citric acid after application of the temporary cements demonstrated remnants of temporary cement attached to dentin surface.

  • PDF

A STUDY OF TENSILE BOND STRENGTH ACCORDING TO VARIED TREATMENT METHODS OF NONPRECIOUS METAL SURFACE AND RESIN CEMENTS (비귀금속합금 표면처리방법과 레진시멘트 종류가 접착인장강도에 미치는 영향에 관한 연구)

  • Yang, Tai-Jin;Lim, Ju-Hwan;Cho, In-Ho
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.34 no.2
    • /
    • pp.335-348
    • /
    • 1996
  • Retention is one of the major factors deciding the success and longevity of resin bonded restorations. The purpose of this study was to find a better resin cement and metal surface treatment method that would enhance the bonding strength. The bonding surfaces of Verabond, one of Ni-Cr-Be alloys, were treated with sandblasting(Group 1), sandblasting and EZ-Oxisor(Group 2), sandblasting and silicoating(Group 3), and than thay were bonded with All-Bond C & B, Panavia 21, Superbond C & B. The specimens were thermocycled, and the tensile bond strength was measured using the unive-rsal testing machine. Also the mode of bond failure was observed. The results were as folows. 1. The Superbond C & B showed the highest bond strength among the three resin cements and decreased in the order of Panavia 21, All-Bond C & B. There was significant differe-nce among them(p<0.05). 2. Group 3 showed the highest bond strength among the three metal surface treatment methods, and there was significant difference compared with Group 1 and Group 2(p<0.05). But there was no significant difference between Group 1 and Group 2. 3. Observing the mode of bond failure, Superbond C & B and Panavia 21 showed mostly cohesive failure in all groups. All-Bond C & B showed all types of bond failure in Group 3, but Group 1 and Group 2 showed only adhesive failure. 4. According to the results of this study, the silicoating method and 4-META containing resin cement were considered to be more acceptable for resin bonded restoration.

  • PDF

THE EFFECT OF THERMOCYCLING ON BOND STRENGTH BETWEEN METAL AND RESIN CEMENT (Thermocycling이 금속과 레진시멘트간의 결합강도에 미치는 영향)

  • Kang, Geon-Gu;Chung, Kwan-Ho;Choi, Jeong-Ho;Ahn, Seung-Geun;Song, Kwang-Yeob;Park, Chan-Woon
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.34 no.2
    • /
    • pp.233-245
    • /
    • 1996
  • The purpose of this study was to evaluate the effect of thermocycling on bond strength between metal and resin cement according to thermocycling, and to observe the bond failure modes with optical microscope(X30). For this purpose, Super-Bond C & B and Panavia 21 resin cement were used. Metal specimens were made of Vera-Bond and the surface of specimens were sandblasted with $50{\mu}m$ aluminum oxide. All experimental groups were stored in $37^{\circ}C$ distilled water for 72 hours, followed by thermocycling between $5^{\circ}C$ and $55^{\circ}C$ with 15 second dwell time. 500, 1000, 2000 cycles of thermocycling were executed and the tensile bond strength was measured by Instron Universal Testing Machine(Model 4201) The obtained results were as follows : 1. Super-Bond C & B and Panavia 21 did not show statistically significant difference accor-ding to thermocycling test(P>0.05). 2. Super-Bond C & B specimens exhibited statistically significant higher tensile bond stre-ngth than Panavia 21 for all experimental groups(P<0.05). 3. Super-Bond C & B exhibited mixed mode failure with partial adhesive and partial cohe-sive failure, and most of Panavia 21 exhibited cohesive failure and some mixed mode failure.

  • PDF

Push-out bond strengths of fiber-reinforced composite posts with various resin cements according to the root level

  • Chang, Hoon-Sang;Noh, Young-Sin;Lee, Yoon;Min, Kyung-San;Bae, Ji-Myung
    • The Journal of Advanced Prosthodontics
    • /
    • v.5 no.3
    • /
    • pp.278-286
    • /
    • 2013
  • PURPOSE. The aim of this study was to determine whether the push-out bond strengths between the radicular dentin and fiber reinforced-composite (FRC) posts with various resin cements decreased or not, according to the coronal, middle or apical level of the root. MATERIALS AND METHODS. FRC posts were cemented with one of five resin cement groups (RelyX Unicem: Uni, Contax with activator & LuxaCore-Dual: LuA, Contax & LuxaCore-Dual: Lu, Panavia F 2.0: PA, Super-Bond C&B: SB) into extracted human mandibular premolars. The roots were sliced into discs at the coronal, middle and apical levels. Push-out bond strength tests were performed with a universal testing machine at a crosshead speed of 0.5 mm/min, and the failure aspect was analyzed. RESULTS. There were no significant differences (P>.05) in the bond strengths of the different resin cements at the coronal level, but there were significant differences in the bond strengths at the middle and apical levels (P<.05). Only the Uni and LuA cements did not show any significant decrease in their bond strengths at all the root levels (P>.05); all other groups had a significant decrease in bond strength at the middle or apical level (P<.05). The failure aspect was dominantly cohesive at the coronal level of all resin cements (P<.05), whereas it was dominantly adhesive at the apical level. CONCLUSION. All resin cement groups showed decreases in bond strengths at the middle or apical level except LuA and Uni.

A Study on SiC/SiC and SiC/Mild steel brazing by the Ag-Ti based alloys (Ag-Ti계 합금을 사용한 SiC/SiC 및 SiC/연강 브레이징에 대한 연구)

  • 이형근;이재영
    • Journal of Welding and Joining
    • /
    • v.14 no.4
    • /
    • pp.99-108
    • /
    • 1996
  • The microstructure and bond strength are examined on the SiC/SiC and SiC/mild steel joints brazed by the Ag-Ti based alloys with different Ti contents. In the SiC/SiC brazed joints, the thickness of the reaction layers at the bond interface and the Ti particles in the brazing alloy matrices increase with Ti contents. When Ti is added up to 9 at% in the brazing alloy. $Ti_3SiC_2$ phase in addition to TiC and $Ti_5Si_3$ phase is newly created at the bond interface and TiAg phase is produced from peritectic reaction in the brazing alloy matrix. In the SiC/mild steel joints brazed with different Ti contents, the microstructure at the bond interface and in the brazing alloy matrix near SiC varies similarly to the case of SiC/SiC brazed joints. But, in the brazing alloy matrix near the mild steel, Fe-Ti intermetallic compounds are produced and increased with Ti contents. The bond strengths of the SiC/SiC and SiC/mild steel brazed joints are independent on Ti contents in the brazing alloy. There are no large differences of the bond strength between SiC/SiC and SiC/mild steel brazed joints. In the SiC/mild steel brazed joints, Fe dissolved from the mild steel does not affect on the bond strength of the joints. Thermal contraction of the mild steel has nearly no effects on the bond strength due to the wide brazing gap of specimens used in the four-point bend test. The brazed joints has the average bond strength of about 200 MPa independently on Ti contents, Fe dissolution and joint type. Fracture in four-point bend test initiates at the interface between SiC and TiC reaction layer and propagates through SiC bulk. The adhesive strength between SiC and TiC reaction layer seems to mainly control the bond strength of the brazed joints.

  • PDF

Flexural Adhesive Performance of RC Beams Strengthened by Carbon Fiber Sheets (탄소섬유쉬트로 보강된 RC보의 휨 부착성능)

  • 유영찬;최기선;최근도;김긍환;이한승
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.4
    • /
    • pp.549-555
    • /
    • 2002
  • Tensile strength of CFRP (Carbon Fiber Reinforced Polymer) is approximately 10 times higher than that of the steel reinforcement, but the design strength of CFRP is normally limited by unpredictable bond failure between RC and CFRP. Many researches concerned with bond behavior between RC and CFRP have been carried out to prevent the bond failure of RC beam strengthened by CFRP, but the national design code for design bond strength of CFRP has not been constructed. In this study, three beam specimens strengthened by CFRP under the parameters of bonded length were tested to derive the design bond strength of CFRP for the RC flexural members. Each bonded length was calculated based on the bond strength of JCI and CFRP manufacturing company. Also, another two beam specimens strengthened by CFRP were tested to inspect the construction environment effects such as mixing error of epoxy resin, and the amount of epoxy primer. From the test results, it is concluded that the maximum design bond strength of CFRP to RC flexural member is considered to be $\tau$a =8 kgf/㎠.

EFFECT OF BENZALKONIUM CHLORIDE ON DENTIN BONDING WITH BPDM/HEMA SYSTEM (Benzalkonium Chloride가 BPDM/HEMA계 접착제의 상아질 접착에 미치는 영향)

  • Kwon, Byung-Gyun;Ahn, Sik-Hwan;Kim, Sung-Kyo
    • Restorative Dentistry and Endodontics
    • /
    • v.21 no.2
    • /
    • pp.569-584
    • /
    • 1996
  • The purpose of this study was to elucidate the effect of benzalkonium chloride on tensile bond strength of BPDM/HEMA dentin bonding. One hundred sixty dentin specimens from freshly extracted bovine mandibular incisors were used, and 0, 0.02, 0.1 or 0.5% benzalkonium chloride solution was applied to the dentin specimen with/after phosphoric acid. 32% phosphoric acid was used when the specimens were bonded with One-Step$^{TM}$, a BPDM/HEMA system and 10% was used when bonded with All-Bond$^{(R)}$ 2, a NTG-GMA/BPDM system. Aelitefil$^{TM}$ composite resin was bonded to the pretreated dentin specimen with the use of All-Bond$^{(R)}$ 2 or One-Step$^{TM}$ dentin bonding agent. After the bonded specimens were stored in $37^{\circ}C$ distilled water for 24 hours, tensile bond strength was measured. The fractured dentin specimens were examined under the scanning electron microscope. The results were as follows : Benzalkonium chloride application after acid-treatment resulted in decrease of dentin bond strength of One-Step$^{TM}$, a BPDM/HEMA system (p>0.05). Benzalkonium chloride application did not exert any influence on dentin bond strength of All-Bond$^{(R)}$ 2, a NTG-GMA/BPDM system (p>0.05). There was no relationship between the concentration or application method of benzalkonium chloride and the dentin bond strength of One-Step$^{TM}$ or All-Bon$^{(R)}$ 2 (p<0.05). On SEM examination of the fractured dentin-resin interface, while mixed failure was prominent in dentin bonding with One-Step$^{TM}$, adhesive and mixed failures were seen together in dentin bonding with All-Bond$^{(R)}$ 2 regardless of the concentration and application method of benzalkonium chloride.

  • PDF

Effects of Hybrid Coat on shear bond strength of five cements: an in-vitro study

  • Guo, Yue;Zhou, Hou-De;Feng, Yun-Zhi
    • The Journal of Advanced Prosthodontics
    • /
    • v.9 no.6
    • /
    • pp.447-452
    • /
    • 2017
  • PURPOSE. To evaluate the sealing performance of Hybrid Coat and its influence on the shear bond strength of five dentin surface cements. MATERIALS AND METHODS. Six premolars were pretreated to expose the dentin surface prior to the application of Hybrid Coat. The microscopic characteristics of the dentinal surfaces were examined with scanning electron microscopy (SEM). Then, 40 premolars were sectioned longitudinally, and 80 semi-sections were divided into a control group (untreated) and a study group (treated by Hybrid Coat). Alloy restoration was bonded to the teeth specimen using five different cements. Shear bond strength was measured by the universal testing machine. The fracture patterns and the adhesive interface were observed using a stereomicroscope. RESULTS. SEM revealed that the lumens of dentinal tubules were completely occluded by Hybrid Coat. The Hybrid Coat significantly improved the shear bond strength of resin-modified glass ionomer cement (RMGIC) and resin cement (RC) but weakened the performance of zinc phosphate cement (ZPC), zinc polycarboxylate cement (ZPCC) and glass ionomer cement (GIC). CONCLUSION. Hybrid Coat is an effective dentinal tubule sealant, and therefore its combined use with resin or resin-modified glass ionomer cements can be applied for the prostheses attachment purpose.