• Title/Summary/Keyword: adhesive bond

Search Result 759, Processing Time 0.026 seconds

Comparative Study on Test Method of Compressive and Flexural Characteristics of Structural Adhesives for FRP Composites used in Strengthening RC Members (구조보강용 FRP 함침.접착수지의 압축.휨 특성치 시험방법 비교 연구)

  • You, Young-Chan;Choi, Ki-Sun;Kim, Keung-Hwan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05b
    • /
    • pp.349-352
    • /
    • 2006
  • Pull-off test is generally used as a method of evaluating bond strength of FRP with concrete at the job site. However, pull-off test damages FRP composites and the maximum pull-off strength is limited up to tensile strength of concrete. Accordingly, it is required to set-up a test method that can simply evaluate bond performance of structural adhesive. This study suggested compression and bending test of epoxy resin as test methods that can indirectly evaluate performance of adhesive, as well as standardized test specification for different types of specifications from various countries. In this study, the section dimension of compression and bending test specimens is unified, and standard test specimen size is achieved by test results.

  • PDF

Evaluation of the Performance and Formaldehyde Emission Level of Particleboards Bonded with Urea-Formaldehyde Resins (요소수지로 접착된 파티클보드의 포름알데히드 방산량과 성능평가)

  • Oh, Yong-Sung
    • Journal of the Korean Wood Science and Technology
    • /
    • v.26 no.4
    • /
    • pp.92-97
    • /
    • 1998
  • Four urea-formaldehyde (UF) resins were synthesized as a particleboard (PB) binder with the four different initial formaldehyde/urea mole ratio and the final mole ratio of 1.15. The UF resins were characterized according to the standard method of resin adhesive analysis. PBs were manufactured using liquid UF resins at 5 minutes press time and 6% resin solids levels on an ovendry particle weight basis. A total of 20 PBs was fabricated for 5 panel replication per UF resin types. The panels were tested for physical strength properties per the procedure ASTM D 1037. The formaldehyde emission levels from the PBs bonded with the UF resins were tested according to 2-hour desiccator test method ASTM D 5582. There were no significant differences among UF resin types for internal bond strength of PBs. But there were significant differences among UF resin types for formaldehyde emission level of PBs. The results showed that the formaldehyde emission level was influenced by the UF resin types without reducing the adhesive performance.

  • PDF

Reactive Hot Melt Polyurethane Adhesives Modified by Acrylic Copolymer Nanocomposites

  • Cho, Youn-Bok;Jeong, Han-Mo;Kim, Byung-Kyu
    • Macromolecular Research
    • /
    • v.17 no.11
    • /
    • pp.879-885
    • /
    • 2009
  • A macroazoinitiator (MAI) containing a poly(ethylene glycol) (PEG) segment was intercalated in the gallery of sodium montmorillonite (Na-MMT). Acrylic monomers were polymerized using this MAI intercalated in Na-MMT to prepare the acrylic copolymer nanocomposite (AN), which is a multiblock copolymer composed of two segments, an acrylic copolymer and PEG intercalated in Na-MMT (Na-MMT/PEG). When AN was used to modify the reactive hot melt polyurethane adhesive (RHA), the acrylic copolymer segment and Na-MMT/PEG synergistically enhanced the initial bond strength evolution and reduced the set time, even when the amount of Na-MMT in RHA was < 1 wt%. The viscosity of RHA increased and the tensile properties of the cured RHA film decreased due to modification with AN. These variations were more evident as the Na-MMT content in AN was increased.

THE EFFECT OF ETCHING TIME ON SHEAR BOND STRENGTH AND ADAPTIBILITY OF ONE-BOTTLE DENTIN ADHESIVE (One-bottle 상아질 접착제의 전단결합강도와 접착성에 관한 부식시간의 효과)

  • Park, Kwang-Soo;Park, Il-Yoon;Cho, Young-Gon
    • Restorative Dentistry and Endodontics
    • /
    • v.24 no.1
    • /
    • pp.240-250
    • /
    • 1999
  • The purpose of this study was to evaluate the effect of different etching time on the shear bond strength and adaptibility of composite to enamel and dentin when used one-bottle adhesive Prime & Bond$^{TM}$ 2.0. The proximal and occlusal surfaces of 88 extracted human molars were ground to expose enamel(n=44) and dentin (=44) using diamond wheel saw. Teeth were randomly assigned to four test groups(n=11) and received the following treatments : Control group were conditioned with 36% phosphoric acid for 20 sec. according to the manufacturer's directions. Experimental 10 sec. group, 30 sec. group and 60 sec. group were conditioned with 36% phosphoric acid for 10 sec., 30 sec. and 60 sec., respectively. Teeth were rinsed and dried for 2 sec. Prime & Bond$^{TM}$ 2.0 were applied according to the manufacturer's directions and Spectrum$^{TM}$ TPH composite resins were bonded to enamel and dentin surfaces. All specimens were stored in distilled water for 24 hours. Eighty specimens were sheared in a Universal Testing Machine with a crosshead speed of 5mm/minute. One way ANOVA and LSD test were used for statistical analysis of the data. Failure modes of all specimens after shear bond strength test were examined and listed. Also, representive postfracture modes and eight specimens were examined under scanning electron microscope. The results of this study were as follows: 1. The shear bond strength to enamel was the highest value in 30 sec. group (20.68${\pm}$8.54MPa) and the lowest value in 10 sec. group (14.92${\pm}$6.07MPa), so there was significant difference of shear bond strength between two groups (p<0.05). But there was no significant difference among other groups (p>0.05). With longer etching time to enamel from 10 sec. to 30 sec., higher the shear bond strength was obtained, but the shear bond strength was decreased at 60 sec. etching time. 2. The shear bond strength to dentin was the highest value in control group (13.08${\pm}$6.25MPa) and the lowest value in 60 sec. group (9.47${\pm}$3.35MPa), but there was no significant difference among the all groups (p>0.05). The eching time over 20 sec. decreased the shear bond strength to dentin. 3. In SEM observation, the enamel and resin interfaces were showed close adaptation with no relation to etching time of enamel. And the dentin and resin interfaces were showed close adaptation at 20 sec. and 30 sec. etching time, but showed some gaps at 10 sec. and 60 sec. etching time. Accordingly, these results indicated that a appropriate etching time in Prime & Bond$^{TM}$ 2.0 was required to be 30 sec. in enamel and 20 sec. in dentin for the high shear bond strength and good adaptation between the composite resin and tooth substance.

  • PDF

Numerical analysis of the combined aging and fillet effect of the adhesive on the mechanical behavior of a single lap joint of type Aluminum/Aluminum

  • Medjdoub, S.M.;Madani, K.;Rezgani, L.;Mallarino, S.;Touzain, S.;Campilho, R.D.S.G.
    • Structural Engineering and Mechanics
    • /
    • v.83 no.5
    • /
    • pp.693-707
    • /
    • 2022
  • Bonded joints have proven their performance against conventional joining processes such as welding, riveting and bolting. The single-lap joint is the most widely used to characterize adhesive joints in tensile-shear loadings. However, the high stress concentrations in the adhesive joint due to the non-linearity of the applied loads generate a bending moment in the joint, resulting in high stresses at the adhesive edges. Geometric optimization of the bonded joint to reduce this high stress concentration prompted various researchers to perform geometric modifications of the adhesive and adherends at their free edges. Modifying both edges of the adhesive (spew) and the adherends (bevel) has proven to be an effective solution to reduce stresses at both edges and improve stress transfer at the inner part of the adhesive layer. The majority of research aimed at improving the geometry of the plate and adhesive edges has not considered the effect of temperature and water absorption in evaluating the strength of the joint. The objective of this work is to analyze, by the finite element method, the stress distribution in an adhesive joint between two 2024-T3 aluminum plates. The effects of the adhesive fillet and adherend bevel on the bonded joint stresses were taken into account. On the other hand, degradation of the mechanical properties of the adhesive following its exposure to moisture and temperature was found. The results clearly showed that the modification of the edges of the adhesive and of the bonding agent have an important role in the durability of the bond. Although the modification of the adhesive and bonding edges significantly improves the joint strength, the simultaneous exposure of the joint to temperature and moisture generates high stress concentrations in the adhesive joint that, in most cases, can easily reach the failure point of the material even at low applied stresses.

Comparison of the elastic modulus among three dentin adhesives before and after thermocycling (열시효 처리에 따른 상아질 접착 계면의 탄성계수의 변화 비교)

  • Chang, Ju-Hea;Lee, In-Bog;Cho, Byeong-Hoon;Kim, Hae-Young;Son, Ho-Hyun
    • Restorative Dentistry and Endodontics
    • /
    • v.33 no.1
    • /
    • pp.45-53
    • /
    • 2008
  • The purpose of this study was to determine the effects on the elastic moduli of the adhesive and the hybrid layer from thermocycling. Twenty one human molars were used to create flat dentin surfaces. Each specimen was bonded with a light-cured composite using one of three commercial adhesives (OptiBond FL [OP], Clearfil SE Bond [CL], and Xeno III [XE]). These were sectioned into two halves and subsequently cut to yield 2-mm thickness specimens; one specimen for immediate bonding test without thermocycling and the other subjected to 10,000 times of thermocycling. Nanoindentation test was performed to measure the modulus of elasticity of the adhesive and the hybrid layer, respectively, using an atomic force microscope. After thermocycling, XE showed a significant decrease of the modulus in the adhesive layer (p < 0.05). Adhesives containing hydrophilic monomers are prone to hydrolytic degradation. It may result in the reduced modulus of elasticity, which leads to the mechanically weakened bonding interface.

The effect of solvent evaporation of dentin adhesive on bonding efficacy (상아질 접착제의 용매 증발이 접착 효율에 미치는 영향)

  • Cho, Min-Woo;Kim, Ji-Yeon;Kim, Duck-Su;Choi, Kyoung-Kyu
    • Restorative Dentistry and Endodontics
    • /
    • v.35 no.5
    • /
    • pp.321-334
    • /
    • 2010
  • Objectives: The purpose of this study is to evaluate bonding efficacy by means of measuring the effect of remained solvent on Degree of conversion(DC) and ${\mu}TBS$ and FE-SEM examination. Materials and Methods: Two 2-step total etching adhesives and two single-step self etching adhesives were used in this study. First, volume weight loss of 4 dentin adhesives were measured using weighting machine in process of time in normal conditions and calculate degree of evaporation (DE). Reaction/reference intensity ratio were measured using micro-Raman spectroscopy and calculate DC according to DE. Then 2 experimental groups were prepared according to air-drying methods (under, over) and control group was prepared to manufacturer's instruction. Total 12 groups were evaluated by means of micro tensile bond strength and FE-SEM examination. Results: Degree of evaporation (DE) was increased as time elapsed but different features were observed according to the kind of solvents. Acetone based adhesive showed higher DE than ethanol and butanol based adhesive. Degree of conversion (DC) was increased according to DE except for $S^3$ bond. In ${\mu}TBS$ evaluation, bond strength was increased by additional air-drying. Large gaps and droplets were observed in acetone based adhesives by FE-SEM pictures. Conclusions: Additional air-drying is recommended for single-step self etching adhesive but careful consideration is required for 2-step total etching adhesive because of oxygen inhibition layer. Evaporation method is carefully chose and applied according to the solvent type.

Bond-slip behavior of reactive powder concrete-filled square steel tube

  • Qiuwei, Wang;Lu, Wang;Hang, Zhao
    • Steel and Composite Structures
    • /
    • v.45 no.6
    • /
    • pp.819-830
    • /
    • 2022
  • This paper presented an experimental study of the bond-slip behavior of reactive powder concrete (RPC)-filled square steel tube. A total of 18 short composite specimens were designed forstatic push-out test, and information on their failure patterns, load-slip behavior and bond strength was presented. The effects of width-to-thickness ratio, height-to-width ratio and the compressive strength of RPC on the bond behavior were discussed. The experimental results show that:(1) the push-out specimens remain intact and no visible local buckling appears on the steel tube, and the interfacial scratches are even more pronounced at the internal steel tube of loading end; (2) the bond load-slip curves with different width-to-thickness ratios can be divided into two types, and the main difference is whether the curves have a drop in load with increasing slip; (3) the bond strength decreases with the increase of the width-to-thickness ratio and height-width ratio, while the influence of RPC strength is not consistent; (4) the slippage has no definite correlation with bond strength and the influence of designed parameters on slippage is not evident. On the basis of the above analysis, the expressions of interface friction stress and mechanical interaction stress are determined by neglecting chemical adhesive force, and the calculation model of bond strength for RPC filled in square steel tube specimens is proposed. The theoretical results agree well with the experimental data.

Self-Alignment and Bonding of Microparts Using Adhesive Droplets

  • Sato, Kaiji;Lee, Keun-Uk;Nishimura, Masahiko;Okutsu, Kazutoshi
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.8 no.2
    • /
    • pp.75-79
    • /
    • 2007
  • This paper describes the self-alignment and bonding of microparts using adhesive surface tension to assemble microsystems in air. The alignment and bonding were tested experimentally using adhesive droplets, and the resulting performance was evaluated. The adhesive, which was inorganic and water-soluble before hardening, was diluted with water to a ratio of 10:1 so that its surface tension generated a sufficient restoring force for self-alignment. The experimental results showed that the average of the alignment errors obtained using the adhesive on $1.0\times1.0\times0.15-mm$ microparts was less than $2{\mu}m$ in the X and Y directions and 0.2 degrees in the e direction. These alignment errors were almost the same as those obtained using water. The use of a suitable adhesive had no negative effects on the alignment accuracy. The average tensile strength of the adhesive bond after self-alignment was $0.61N/mm^2$.

Effect of Spew Fillet on Failure Strength Properties of Natural Fiber Reinforced Composites Including Adhesive Bonded Joints (접착제 접합된 자연섬유강화 복합재료의 파괴강도 특성에 미치는 접착제 필릿의 영향)

  • Yoon Ho-Chel;Choi Jun-Yong;Kim Yong-Jig;Lim Jae-Kyoo
    • Journal of Welding and Joining
    • /
    • v.23 no.6
    • /
    • pp.67-71
    • /
    • 2005
  • This paper is concerned with a study on fracture strength of composites in an adhesive single lap joint. The tests were carried out on joint specimens made with hybrid stacked composites consisting of the polyester and bamboo natural fiber layer. The main objective of this work was to evaluate the fracture properties adjacent to adhesive bonded joint of natural fiber reinforced composite specimens. From the results, natural fiber reinforced composites have lower tensile strength than the original polyester. But tensile-shear strength of natural fiber reinforced composites with bamboo layer far from adhesive bond is as high as that of the original polyester adhesive bonded joints. Spew filet at the end of the overlap reduced the stress concentration at the bonded area. Spew fillet and position of bamboo natural fiber layer have a peat effect on the tensile-shear strength of natural fiber reinforced composites including adhesive bonded joints.