• Title/Summary/Keyword: adhesive bond

Search Result 759, Processing Time 0.022 seconds

INTERFACIAL MORPHOLOGY BETWEEN DENTIN AND ADHESIVES (상아질과 접착제 간의 계면양상)

  • Kang, Ji-Young;Hur, Bock
    • Restorative Dentistry and Endodontics
    • /
    • v.20 no.1
    • /
    • pp.183-192
    • /
    • 1995
  • The purpose of this study was to evaluate the effect of smear layer management on the interfacial morphology between dentin bonding system and dentin. Clearfil New Bond, Scotchbond Multipurpose, Prisma Universal Bond 3 and X-R Bond were used on the cervical dentinal surfaces of bovine incisor teeth. All of the dentin bonding systems were labeled with fluorescene in primer and rhodamine B in adhesive. Specimens of 2~3mm thichness were prepared by longitudinal and labiolingual sectioning. The interface between dentin bonding system and dentin was observed by flouresence imaging with a confocal laser scanning microscope. Following results were obtained. 1. In the specimen of Clearfil New Bond, dentinal tubules were widened by destruction of peritubular dentin in the course of treatment with phosphoric acid of high concentration. 2. Hybrid layer was observed in the specimen of Scotchbond Multipurpose and X-R Bond. 3. In the specimen of Prisma Universal Bond 3, the penetraton of adhesive was not observed clearly.

  • PDF

The study of shear bond strength of a self-adhesive resin luting cement to dentin (상아질에 대한 자가 접착 레진 시멘트의 전단결합강도에 관한 연구)

  • In, Hee-Sun;Park, Jong-Il;Choi, Jong-In;Cho, Hye-Won;Dong, Jin-Keun
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.46 no.5
    • /
    • pp.535-543
    • /
    • 2008
  • Purpose: The objective of this study was to compare the bonding characteristics of a new self-adhesive resin cement to dentin, which does not require bonding and conditioning procedure of the tooth surface, and conventional resin cement. The effect of phosphoric acid etching prior to application of self-adhesive resin cement on the shear bond strength was also evaluated. Material and methods: Fortyfive non-carious human adult molars extracted within 6 months were embedded in chemically cured acrylic resin. The teeth were ground with a series of SiC-papers ending with 800 grit until the flat dentin surfaces of the teeth were exposed. The teeth were randomly divided into 3 experimental groups. In group 1, self-adhesive resin cement, RelyX Unicem (3M ESPE, Seefeld, Germany) was bonded without any conditioning of teeth. In group 2, RelyX Unicem was bonded to teeth after phosphoric acid etching. For group 3, Syntac Primer (Ivoclar Vivadent AG, Schaan, Liechtenstein) was applied to the teeth before Syntac adhesive (Ivoclar Vivadent AG, Schaan, Liechtenstein) and Helibond (Ivoclar Vivadent AG, Schaan, Liechtenstein) followed by conventional resin cement, Variolink II (Ivoclar Vivadent AG, Schaan, Liechtenstein). To make a shear bond strength test model, a plastic tuble (3 mm diameter, 3 mm height) was applied to the dentin surfaces at a right angle and filled it with respective resin cement, and light-polymerized for 40 seconds. All the specimens were stored in distilled water at $37^{\circ}C$ for 24 hours before test. Universal Testing Machine (Z020, Zwick, Ulm, Germany) at a cross head speed of 1 mm/min was used to evaluate the shear bond strength. The failure sites were inspected under a magnifier and Scanning Electron Microscope. The data was analyzed with One way ANOVA and Scheffe test at ${\alpha}$= 0.05. Results: (1) The shear bond strengths to dentin of RelyX Unicem was not significantly different from those of Variolink II/Syntac. (2) Phosphoric acid etching lowered the shear bond strength of RelyX Unicem significantly. (3) Most of RelyX Unicem and Variolink II showed mixed fractures, while all the specimens of RelyX Unicem with phosphoric acid etching demonstrated adhesive failure between dentin and resin cement. Conclusion: Shear bond strength to dentin of self-adhesive resin cement is not significantly different from conventional resin cement, and phosphoric acid etching decrease the shear bond strength to dentin of self-adhesive resin cement.

Effects of a relined fiberglass post with conventional and self-adhesive resin cement

  • Wilton Lima dos Santos Junior;Marina Rodrigues Santi;Rodrigo Barros Esteves Lins;Luis Roberto Marcondes Martins
    • Restorative Dentistry and Endodontics
    • /
    • v.49 no.2
    • /
    • pp.18.1-18.13
    • /
    • 2024
  • Objectives: This study was conducted to evaluate the mechanical properties of relined and non-relined fiberglass posts when cemented to root canal dentin using a conventional dual-cure resin cement or a self-adhesive resin cement. Materials and Methods: Two types of resin cements were utilized: conventional and self-adhesive. Additionally, 2 cementation protocols were employed, involving relined and non-relined fiberglass posts. In total, 72 bovine incisors were cemented and subjected to push-out bond strength testing (n = 10) followed by failure mode analysis. The cross-sectional microhardness (n = 5) was assessed along the root canal, and interface analyses (n = 3) were conducted using scanning electron microscopy (SEM). Data from the push-out bond strength and cross-sectional microhardness tests were analyzed via 3-way analysis of variance and the Bonferroni post-hoc test (α= 0.05). Results: For non-relined fiberglass posts, conventional resin cement exhibited higher pushout bond strength than self-adhesive cement. Relined fiberglass posts yielded comparable results between the resin cements. Type II failure was the most common failure mode for both resin cements, regardless of cementation protocol. The use of relined fiberglass posts improved the cross-sectional microhardness values for both cements. SEM images revealed voids and bubbles in the incisors with non-relined fiberglass posts. Conclusions: Mechanical properties were impacted by the cementation protocol. Relined fiberglass posts presented the highest push-out bond strength and cross-sectional microhardness values, regardless of the resin cement used (conventional dual-cure or self-adhesive). Conversely, for non-relined fiberglass posts, the conventional dual-cure resin cement yielded superior results to the self-adhesive resin cement.

CHANGES OF THE DEGREE OF CONVERSION AND SHEAR BOND STRENGTH ACCORDING TO THE MONOMER RATIO OF EXPERIMENTAL BONDING RESINS (실험적 접착레진의 단량체 조성비에 따른 중합률 및 전단결합강도 변화에 관한 연구)

  • Moon, Anne-Jay;Kim, Byung-Hyun;Cho, Byeong-Hoon;Kwon, Hyuk-Choon
    • Restorative Dentistry and Endodontics
    • /
    • v.24 no.1
    • /
    • pp.26-39
    • /
    • 1999
  • Bis-GMA, the representative monomer of bonding resin, contributes to the rigidity of bonding layer. Hydrophilic monomer contributes to the permeability into dentin substrates while weaken the bonding layer due to its small molecular weight. The degree of conversion also contributes to the ultimate strength of the bonding layer. This study was performed for the correlation analysis of monomer ratio and dentin bonding strength via degree of conversion. 7 experimental bonding resins were prepared with Bis-GMA, ratio from 20% to 80% by 10% increment, and hydrophilic HEMA monomer. Their degree of conversion and shear bond strength to dentin were compared with Scotchbond Multi-Purpose adhesive, and the fractured surfaces were examined microscopically. The results were as follows; 1. The degree of conversion increased when, the ratio of Bis-GMA increased from 20% to 70%, whereas it decreased when the ratio of Bis-GMA was 80%. 2. Shear bond strengths of the experimental bonding resins of 80%, 70%, 60% ratio of Bis-GMA were significantly higher than those of the experimental bonding resin of 50% ratio of Bis-GMA and Scotchbond Multi-Purpose adhesive. Lower shear bond strengths were obtained with the experimental bonding resins of 40%, 30%, 20% ratio of Bis-GMA (p<0.05). 3. Adhesive fractures were associated with the bonding resins of the lower bond strength, while cohesive fractures within the bonding resin layer were associated with the bonding resins of higher bond strength. Bonding resins with shear bond strength higher than 18MPa showed some cohesive fractures within the composite resin or within the dentin. 4. Correlations between Bis-GMA ratio and the degree of conversion (r=0.826), between Bis-GMA ratio and shear bond strength (r=0.853), and between the degree of conversion and shear bond strength (r=0.786) were significant (p<0.05).

  • PDF

Bonding values of two contemporary ceramic inlay materials to dentin following simulated aging

  • Khalil, Ashraf Abdelfattah;Abdelaziz, Khalid Mohamed
    • The Journal of Advanced Prosthodontics
    • /
    • v.7 no.6
    • /
    • pp.446-453
    • /
    • 2015
  • PURPOSE. To compare the push-out bond strength of feldspar and zirconia-based ceramic inlays bonded to dentin with different resin cements following simulated aging. MATERIALS AND METHODS. Occlusal cavities in 80 extracted molars were restored in 2 groups (n=40) with CAD/CAM feldspar (Vitablocs Trilux forte) (FP) and zirconia-based (Ceramill Zi) (ZR) ceramic inlays. The fabricated inlays were luted in 2 subgroups (n=20) with either etch-and-bond (RelyX Ultimate Clicker) (EB) or self-adhesive (RelyX Unicem Aplicap) (SA) resin cement. Ten inlays in each subgroup were subjected to 3,500 thermal cycles and 24,000 loading cycles, while the other 10 served as control. Horizontal 3 mm thick specimens were cut out of the restored teeth for push out bond strength testing. Bond strength data were statistically analyzed using 1-way ANOVA and Tukey's comparisons at ${\alpha}=.05$. The mode of ceramic-cement-dentin bond failure for each specimen was also assessed. RESULTS. No statistically significant differences were noticed between FP and ZR bond strength to dentin in all subgroups (ANOVA, P=.05113). No differences were noticed between EB and SA (Tukey's, P>.05) bonded to either type of ceramics. Both adhesive and mixed modes of bond failure were dominant for non-aged inlays. Simulated aging had no significant effect on bond strength values (Tukey's, P>.05) of all ceramic-cement combinations although the adhesive mode of bond failure became more common (60-80%) in aged inlays. CONCLUSION. The suggested cement-ceramic combinations offer comparable bonding performance to dentin substrate either before or after simulated aging that seems to have no adverse effect on the achieved bond.

Antibacterial effect of self-etching adhesive systems on Streptococcus mutans

  • Kim, Seung-Ryong;Shin, Dong-Hoon
    • Restorative Dentistry and Endodontics
    • /
    • v.39 no.1
    • /
    • pp.32-38
    • /
    • 2014
  • Objectives: In this study, we evaluated the antibacterial activity of self-etching adhesive systems against Streptococcus mutans using the agar diffusion method. Materials and Methods: Three 2-step systems, Clearfil SE Bond (SE, Kuraray), Contax (CT, DMG), and Unifil Bond (UnB, GC), and three 1-step systems, Easy Bond (EB, 3M ESPE), U-Bond (UB, Vericom), and All Bond SE (AB, BISCO) were used. 0.12% chlorhexidine (CHX, Bukwang) and 37% phosphoric acid gel (PA, Vericom) were used as positive controls. Results: The antibacterial activity of CHX and PA was stronger than that of the other groups, except SE. After light activation, the inhibition zone was reduced in the case of all 2-step systems except CT. However, all 1-step systems did not exhibit any inhibition zone upon the light activation. Conclusions: SE may be better than CT or UnB among the 2-step systems with respect to antibacterial activity, however, 1-step systems do not exhibit any antibacterial activity after light curing.

Influence of nonthermal argon plasma on the shear bond strength between zirconia and different adhesives and luting composites after artificial aging

  • Pott, Philipp-Cornelius;Syvari, Timo-Sebastian;Stiesch, Meike;Eisenburger, Michael
    • The Journal of Advanced Prosthodontics
    • /
    • v.10 no.4
    • /
    • pp.308-314
    • /
    • 2018
  • PURPOSE. Plasma activation of hydrophobic zirconia surfaces might be suitable to improve the bond strength of luting materials. The aim of this study was to analyze the influence of nonthermal argon-plasma on the shear bond strength (SBS) between zirconia and different combinations of 10-MDP adhesive systems and luting composites after artificial aging. MATERIALS AND METHODS. Two hundred forty Y-TZP specimens were ground automatically with $165{\mu}m$ grit and water cooling. Half of the specimens received surface activation with nonthermal argon-plasma. The specimens were evenly distributed into three groups according to the adhesive systems ([Futurabond U, Futurabond M, Futurabond M + DCA], VOCO GmbH, Germany, Cuxhaven) and into further two subgroups according to the luting materials ([Bifix SE, Bifix QM], VOCO GmbH). Each specimen underwent artificial aging by thermocycling and water storage. SBS was measured in a universal testing machine. Statistical analysis was performed using ANOVA and $Scheff{\grave{e}}$ procedure with the level of significance set to 0.05. RESULTS. Surface activation with nonthermal plasma did not improve the bond strength between zirconia and the tested combinations of adhesive systems and luting materials. The plasma-activation trended to reveal higher bond strength if the self-etch luting material (Bifix SE) was used, irrespective of the adhesive system. CONCLUSION. Plasma-activation seems to be suitable to improve bond strength between zirconia and self-etch resin materials. However, further research is necessary to identify the influence of varying plasma-parameters.

EFFECT OF FLUORIDE APPLICATION ON DENTIN BONDING (불소도포가 상아질 접착에 미치는 영향)

  • Kwon, Hyoung-Jo;Park, Jin-Hoon;Cho, Kyeu-Zeung
    • Restorative Dentistry and Endodontics
    • /
    • v.20 no.1
    • /
    • pp.113-128
    • /
    • 1995
  • The purpose of this study was to investigate the effect of stannous fluoride on the dentin bonding with three kinds of commercially available dentin bonding systems containing different adhesive monomers. Dentin specimens with exposed labial dentin prepared from freshly extracted bovine mandibular anterior teeth were divided into experimental and control groups. The specimens of experimental groups were bonded with dentin bonding systems and composite resins including All bond 2 ㅡ& Bisfil, Scotchbond Multi-Purpose & Z100, and Denthesive II Charisma after 2 % stannous& fluorided application for S minutes and washing for 1 minute. The specimens of control groups were bonded with the same dentin bonding systems and composite resins as used in the experimental groups. After bonded specimens were stored in $37^{\circ}C$ distilled water for 24 hours, the tensile bond strength and cohesive failure rate were measured, and then the pretreated dentin surfaces and the fractured dentin surfaces were examined under scanning electron microscope. The results were as follows : Mean bond strength of stannous fluoride applied groups of All bond 2, Scotchbond MP, and Denthesive II were 2.5MPa, 1.1MPa, and 1.1MPa respectively, and those of control groups were 7.5MPa, 8.1MPa, and 4.6MPa. Bond strength values of stannous fluoride applied groups were significantly lower than those of the control groups(p<0.05). SEM findings of dentin surfaces after stannous fluoride application demonstrated an appearance of partially remained smear layer and smear plugs inspite of pretreatment with 10 % phosphoric aicd or maleic acid solution, and an appearance of smear layer covered surface under Denthesive II priming. But those of control groups commonly showed clean dentin surfaces without smear layer and smear plugs. On SEM observation of the fractured dentin-resin interface, while most of the specimens of stannous fluoride applied groups showed adhesive failure mode, those of All bond 2 and Scotchbond MP control groups showed mainly adhesive-cohesive mixed failure mode, and mainly adhesive failure mode in Denthesive II control group.

  • PDF

Study on Adhesive Properties by Hot-air Welding of Polyvinyl Chloride Waterproof Sheet Using used vinyl & used cable in Rural Area (농촌의 폐비닐과 폐전선을 활용한 폴리염화비닐 방수시트의 열풍용착에 의한 접착특성에 관한 연구)

  • Ko, Jin-Soo;Kim, Byung-Yun
    • Journal of the Korean Institute of Rural Architecture
    • /
    • v.16 no.4
    • /
    • pp.75-81
    • /
    • 2014
  • In this study, we have intended to provide the related construction manuals with technical materials and to reduce the defects in the on-site construction, with reviewing the adhesive properties of joint parts according to change of temperature and speed of hot-air sealer for the products that have been made of polyvinyl chloride(PVC) materials in the single waterproof sheet. The result from the experiment is shown as following. 1) Bond strength was shown as high as the welding speed became slower. For the hot-air welding velocity with 3~6m/min, a stable bond strength has been shown in the range of the hot-air welding temperature with $175{\sim}210^{\circ}C$, while it has been shown in the range of the hot-air welding temperature with $210^{\circ}C$, when the hot-air welding velocity is between 9~12m/min. 2) If the hot-air welding temperature is lower, the adhesive strength has been shown as higher in the section where the hot-air welding velocity is low, while the adhesive strength has been also shown as higher in the section where the velocity is fast as the hot-air welding temperature becomes higher. The highest bond strength has been shown in the velocity with 3m/min for the hot-air welding temperature with $140{\pm}10^{\circ}C$, which is rather low. At $175{\pm}10^{\circ}C$, a high bond strength has been shown in the velocity with 3~6m/min, while the high bond strength has been shown in the velocity with 6~9m/min at $210{\pm}10^{\circ}C$.

THE EFFECT OF ADHESIVE PROPERTY ON MICROTENSILE BOND STRENGTH TO HUMAN DENTIN (상아질 접착제의 성상이 미세인장결합강도에 미치는 영향)

  • Kim, Hyoun-Jin;Hur, Bock;Kim, Hyun-Cheol
    • Restorative Dentistry and Endodontics
    • /
    • v.29 no.3
    • /
    • pp.281-287
    • /
    • 2004
  • The purposes of this study were to evaluate the effect of adhesive property on microtensile bond strength and to determine the failure mode. Flat occlusal dentin surfaces were prepared using low-speed diamond saw. The dentin was etched with 37% phosphoric acid. The following adhesives were applied to the etched dentin to manufacturer's directions: Scotchbond Multi-Purpose in group SM, Prime&Bond NT in group NT, Scotchbond Multi-Purpose followed by Tetric-flow in group TR. After adhesive application, a cylinder of resin-based composite was built up on the occlusal surface. Each tooth was sectioned vertically to obtain the $1{\;}{\times}{\;}1\textrm{mm}^2$ "sticks". Microtensile bond strength were determined. Each specimen was observed under stereomicroscope and scanning electron microscope (SEM) to examine the failure mode. Data were analyzed using one way ANOVA. The results of this study were as follows:1. The microtensile bond strength value were:group SM ($18.98{\pm}3.01MPa$). group NT ($16.01{\pm}4.82MPa$) and group TR ($17.56{\pm}3.22MPa$). No significant statistical differences were observed among the groups (P>0.05). 2. Most of specimens showed mixed failure. In group TR, there was a higher number of specimens showing areas of cohesive failure in resin.