• Title/Summary/Keyword: adhesion reliability

Search Result 103, Processing Time 0.025 seconds

Adhesion Reliability Enhancement of Silicon/Epoxy/Polyimide Interfaces for Flexible Electronics

  • Kim, Sanwi;Kim, Taek-Soo
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.19 no.3
    • /
    • pp.63-69
    • /
    • 2012
  • Adhesion and mechanical reliability of silicon/epoxy/polyimide interfaces are critical issues for flexible electronics. Bonds between these interfaces are mainly hydrogen bonds, so their adhesion is weaker than cohesive fracture toughness and vulnerable to moisture. In order to enhance adhesion and suppress moisture-assisted debonding, UV/Ozone treatment and innovative sol-gel derived hybrid layers were applied to silicon/epoxy/polyimide interfaces. The fracture energy and subcritical crack growth rate were measured by using a double cantilever beam (DCB) fracture mechanics test. Results showed that UV/Ozone treatment increased the adhesion, but was not effective for improving reliability against humidity. However, by applying sol-gel derived hybrid layers, adhesion increase as well as suppresion of moisture-assisted cracking were achieved.

Four Point Bending Test for Adhesion Testing of Packaging Strictures: A Review

  • Mahan, Kenny;Han, Bongtae
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.21 no.4
    • /
    • pp.33-39
    • /
    • 2014
  • To establish the reliability of a packaging structures, adhesion testing of key interfaces is a critical task. Due to the material mismatch, the interface may be prone to delamination failure due to conditions during the manufacturing of the product or just from the day-to-day use. To assess the reliability of the interface adhesion strength testing can be performed during the design phase of the product. One test method of interest is the four-point bending (4PB) adhesion strength test method. This test method has been implemented in a variety of situations to evaluate the adhesion strength of interfaces in bimaterial structures to the interfaces within thin film multilayer stacks. This article presents a review of the 4PB adhesion strength testing method and key implementations of the technique in regards to semiconductor packaging.

A Study on the Effect of Polyetherimide Surface Treatment on the Adhesion and High Temperature/High Humidity Reliability of MCM-D Interface (Polyetherimide 접착제의 표면 처리에 따른 MCM-D 계면 접착력 및 고온고습 신뢰성 변화에 관한 연구)

  • Yoon, Hyun-Gook;Ko, Hyoung-Soo;Paik, Kyung-Wook
    • Korean Journal of Materials Research
    • /
    • v.9 no.12
    • /
    • pp.1176-1180
    • /
    • 1999
  • The adhesion strength and high temperature/high humidity reliability of polyetherimide (PEI) adhesive on silicon wafer after being treated by each reactive ion etching (RIE) Aluminum (Al)-chelate adhesion promoter were investigated. 180$^{\circ}$ peel test and <85$^{\circ}C$ 85%> humidity test were performed for the initial adhesion strength and high temperature/high humidity reliability, respectively. For investigating surface effect scanning electron microscope (SEM), atomic force microscope (AFM), deionized (DI)-water contact angle studies were carried out. To investigate RIE effect, PEI was treated with $^O_2$ RIE, and then laminated. The initial peel strength increased slightly from 1.6 kg/cm for the first 2 minutes, and then decreased. High temp/high humid resistance decreased rapidly by RIE etching. RIE treatment on PEI affected on both of roughness and hydrophilicity increase. Aluminum-chelate adhesion promoter was coated by spinning on silicon wafer. The initial peel strength showed no effect of adhesion promoter treatment, but high temp/high humidity resistance increased remarkably. Al-chelate adhesion promoter did not affect the roughness but increased hydrophilicity.

  • PDF

Bending Fatigue Reliability Improvements of Cu Interconnects on Flexible Substrates through Mo-Ti Alloy Adhesion Layer (Mo-Ti 합금 접착층을 통한 유연 기판 위 구리 배선의 기계적 신뢰성 향상 연구)

  • Lee, Young-Joo;Shin, Hae-A-Seul;Nam, Dae-Hyun;Yeon, Han-Wool;Nam, Boae;Woo, Kyoohee;Joo, Young-Chang
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.22 no.1
    • /
    • pp.21-25
    • /
    • 2015
  • Bending fatigue characteristics of Cu films and $8{\mu}m$ width Cu interconnects on flexible substrates were investigated, and fatigue reliability improvement was achieved through Mo-Ti alloy adhesion layer. Tensile bending fatigue reliability of Cu interconnects is 3 times lower than that of Cu films, and even compressive bending fatigue reliability of Cu interconnects is 6 times lower than that of Cu films. From these results, mechanical crack formation could be fatal in Cu interconnects. With Mo-Ti adhesion layer, fatigue reliability of Cu films and interconnects were enhanced due to the increase of adhesion strength and the suppression of slip induced crack initiation.

Effect of Ar Gas Plasma Treatment of Plastic Ball Grid Array Package (플라스틱 BGA 패키지의 아르곤 가스 플라즈마 처리 효과)

  • 신영의;김경섭
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.13 no.10
    • /
    • pp.805-811
    • /
    • 2000
  • Reliability of PBGA(plastic ball grid array) package is weak compared with normal plastic packages. The low reliability is caused by low resistance to the popcorn cracking, which is generated by moisture absorption in PCB(prited circuit board). In this paper, plasma treatment process was used and we analyzed its effects to interface adhesion. The contents of C and Cl decrease after plasma treatment but those of O, Ca, N relatively increase. The plasma treatment improves the adhesion between EMC(epoxy molding compound) and PCB(solder mask). The grade of improvement was over 100% Max, which depends on the properties of EMC. The RMS(root mean square) roughness value of the solder mask surface increases to plasma treatment. There is little difference of adhesion in RF power and treatment time.

  • PDF

Characterization of Dacrotized Bolts (다크로 방식 처리된 볼트의 특성 평가)

  • Yang, Chi-Hoon;Ko, Jeong;Kim, Dae-Yong
    • Journal of Applied Reliability
    • /
    • v.1 no.2
    • /
    • pp.95-108
    • /
    • 2001
  • To enhance the corrosion resistance of a bolt by surface treatment, dacrotization was considered as a substitute for phosphate coating which is widely used for general applications. In this study, comparisons were made among 5 different kinds of surface treatments including dacrotization and phosphate coating with respect to corrosion resistance, adhesion property with painting, and preload when tightened. The result shows that the dacrotized and surface-stabilized bolt is much superior in every aspects studied herein to others. An excellent corrosion resistance and a fairly good adhesion property with painting were achieved in the dacrotized and surface-stabilized bolt. When tightened at the same torque, the amount of preload and its deviation of dacrotized and surface-stabilized bolt were comparable with those of phosphate coated bolt.

  • PDF

Reliability of Cu Interconnect under Compressive Fatigue Deformation Varying Interfacial Adhesion Treatment (유연소자용 기판과의 접착 특성에 따른 구리 배선의 압축 피로 거동 및 신뢰성)

  • Min Ju Kim;Jeong A Heo;Jun Hyeok Hyun;So-Yeon Lee
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.30 no.4
    • /
    • pp.105-111
    • /
    • 2023
  • Electronic devices have been evolved to be mechanically flexible that can be endured repetitive deformation. This evolution emphasizes the importance of long-term reliability in metal wiring connecting electronic components, especially under bending fatigue in compressed environments. This study investigated methods to enhance adhesion between copper (Cu) and polyimide (PI) substrates, aiming to improve the reliability of copper wiring under such conditions. We applied oxygen plasma treatment and introduced a chromium (Cr) adhesion layer to the polyimide substrate. Our findings revealed that these adhesion enhancement methods significantly affect compression fatigue behavior. Notably, the chromium adhesion layer, while showing weaker fatigue characteristics at 1.5% strain, demonstrated superior performance at 2.0% strain with no delamination, outperforming other methods. These results offer valuable insights for improving the reliability of flexible electronic devices, including reducing crack occurrence and enhancing fatigue resistance in their typical usage environments.

Factors to Influence Thermal-Cycling Reliability of Passivation Layers in Semiconductor Devices Utilizing Lead-on-Chip (LOC) Die Attach Technique (리드 온 칩 패키징 기술을 이용하여 조립된 반도체 제품에서 패시베이션 박막의 TC 신뢰성에 영향을 미치는 요인들)

  • Lee, Seong-Min;Lee, Seong-Ran
    • Korean Journal of Materials Research
    • /
    • v.19 no.5
    • /
    • pp.288-292
    • /
    • 2009
  • This article shows various factors that influence the thermal-cycling reliability of semiconductor devices utilizing the lead-on-chip (LOC) die attach technique. This work details how the modification of LOC package design as well as the back-grinding and dicing process of semiconductor wafers affect passivation reliability. This work shows that the design of an adhesion tape rather than a plastic package body can play a more important role in determining the passivation reliability. This is due to the fact that the thermal-expansion coefficient of the tape is larger than that of the plastic package body. Present tests also indicate that the ceramic fillers embedded in the plastic package body for mechanical strengthening are not helpful for the improvement of the passivation reliability. Even though the fillers can reduce the thermal-expansion of the plastic package body, microscopic examinations show that they can cause direct damage to the passivation layer. Furthermore, experimental results also illustrate that sawing-induced chipping resulting from the separation of a semiconductor wafer into individual devices might develop into passivation cracks during thermal-cycling. Thus, the proper design of the adhesion tape and the prevention of the sawing-induced chipping should be considered to enhance the passivation reliability in the semiconductor devices using the LOC die attach technique.