• Title/Summary/Keyword: adhesion mechanism

Search Result 345, Processing Time 0.029 seconds

A Novel Complement Fixation Pathway Initiated by SIGN-R1 Interacting with C1q in Innate Immunity

  • Kang, Young-Sun
    • Proceedings of the Microbiological Society of Korea Conference
    • /
    • 2008.05a
    • /
    • pp.23-25
    • /
    • 2008
  • Serum complement proteins comprise an important system that is responsible for several innate and adaptive immune defence mechanisms. There were three well described pathways known to lead to the generation of a C3 convertase, which catalyses the proteolysis of complement component C3, and leads to the formation of C3 opsonins (C3b, iC3b and C3d) that fix to bacteria. A pivotal step in the complement pathway is the assembly of a C3 convertase, which digests the C3 complement component to form microbial-binding C3 fragments recognized by leukocytes. The spleen clears microorganisms from the blood. Individuals lacking this organ are more susceptible to Streptococcus pneumoniae. Innate resistance to S. pneumoniae has previously been shown to involve complement components C3 and C4, however this resistance has only a partial requirement for mediators of these three pathways, such as immunoglobulin, factor B and mannose-binding lectin. Therefore it was likely that spleen and complement system provide resistance against blood-borne S. pneumoniae infection through unknown mechanism. To better understand the mechanisms involved, we studied Specific intracellular adhesion molecule-grabbing nonintegrin (SIGN)-R1. SIGN-R1, is a C-type lectin that is expressed at high levels by spleen marginal-zone macrophages and lymph-node macrophages. SIGN-R1 has previously been shown to be the main receptor for bacterial dextrans, as well as for the capsular pneumococcal polysaccharide (CPS) of S. pneumoniae. We examined the specific role of this receptor in the activation of complement. Using a monoclonal antibody that selectively downregulates SIGN-R1 expression in vivo, we show that in response to S. pneumoniae or CPS, SIGN-R1 mediates the immediate proteolysis of C3 and fixation of C3 opsonins to S. pneumoniae or to marginal-zone macrophages that had taken up CPS. These data indicate that SIGN-R1 is largely responsible for the rapid C3 convertase formation induced by S. pneumoniae in the spleen of mice. Also, we found that SIGN-R1 directly binds C1q and that C3 fixation by SIGN-R1 requires C1q and C4 but not factor B or immunoglobulin. Traditionally C3 convertase can be formed by the classical C1q- and immunoglobulin-dependent pathway, the alternative factor-B-dependent pathway and the soluble mannose-binding lectin pathway. Furthermore Conditional SIGN-R1 knockout mice developed deficits in C3 catabolism when given S. pneumoniae or its capsular polysaccharide intravenously. There were marked reductions in proteolysis of serum C3, deposition of C3 on organisms within SIGN-$R1^+$ spleen macrophages, and formation of C3 ligands. The transmembrane lectin SIGN-R1 therefore contributes to innate resistance by an unusual C3 activation pathway. We propose that in the SIGN-R1 mediated complement activation pathway, after binding to polysaccharide, SIGN-R1 captures C1q. SIGN-R1 can then, in association with several other complement proteins including C4, lead to the formation of a C3 convertase and fixation of C3. Therefore, this new pathway for C3 fixation by SIGN-R1, which is unusual as it is a classical C1q-dependent pathway that does not require immuno globulin, contributes to innate immune resistance to certain encapsulated microorganisms.

  • PDF

Fibroblastic Reticular Cell Derived from Lymph Node Is Involved in the Assistance of Antigen Process (림프절 유래 fibroblastic reticular cell의 효율적 항원처리 관련성에 대한 연구)

  • Kim, Min Hwan;Lee, Jong-Hwan
    • Journal of Life Science
    • /
    • v.26 no.9
    • /
    • pp.1027-1032
    • /
    • 2016
  • Antigen is substance causing disease derived from pathogen. Living organism has the immune system in terms of defense mechanism against antigen. Antigen is processed through several pathways such as phagocytosis, antibody action, complement activation, and cytotoxins by NK or cytotoxic T lymphocyte via MHC molecule. Lymph node (LN) is comprised of the complicated 3 dimensional network and several stromal cells. Fibroblastic reticular cells (FRC) are distributed in T zone for interaction with T cells. FRC produces the extra cellular matrix (ECM) into LN for ECM reorganization against pathogen infections and secretes homing chemokines. However, it has not so much been known about the involvement of the antigen process of FRC. The present report is for the function of FRC on antigen process. For this, FRC was positioned with several infected situations such as co-culture with macrophage, T cell, lipopolysaccharide (LPS) and TNFα stimulation. When co-culture between FRC with macrophage and T cells was performed, morphological change of FRC was observed and empty space between FRCs was made by morphological change. The matrix metallo-proteinase (MMP) activity was up-regulated by Y27632 and T cells onto FRC. Furthermore, inflammatory cytokine, TNFα regulated the expression of adhesion molecules and MHC I antigen transporter in FRC by gene chip assay. NO production was elevated by FRC monolayer co-cultured with macrophage stimulated by LPS. GFP antigen was up-taken by macrophage co-cultured with FRC. Collectively, it suggests that FRC assists of the facilitation of antigen process and LN stroma is implicated into antigen process pathway.

Interfacial fracture Energy between Electroless Plated Ni film and Polyimide for Flexible PCB Applications (Flexible PCB용 무전해 도금 Ni 박막/Polyimide 계면파괴에너지 평가)

  • Min, Kyoung-Jin;Park, Sung-Cheol;Lee, Jee-Jeong;Lee, Kyu-Hwan;Lee, Gun-Hwan;Park, Young-Bae
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.14 no.1
    • /
    • pp.39-47
    • /
    • 2007
  • It is investigated how KOH and Rthylenediamine(EDA) treatment conditions on Polyimide film surface affect the interfacial fracture energy between electroless plated Ni and Polyimide film by $180^{\circ}$ peel test. Estimated values of interfacial fracture energy were 24.5 g/mm and 33.3 g/mm for the KOH treatment times under 1 and 5 minutes, respectively, while, those were 31.6 g/mm and 22.3 g/mm for EDA treatment times under 1 and 5 minutes, respectively. Interfacial bonding between electroless plated Ni and Polyimide seems to be dominated by chemical bonding effect rather than mechanical interlocking effect. It is found that chemical treatment produces carboxyl and mine functional groups which are closely related the interfacial bonding mechanism. Finally, it is speculated that interfacial fracture energy seems to be controlled by O=C-O bonding near cohesive failure region.

  • PDF

Observation of the Incidence of Acrosome Reaction in Human Spermatozoa Treated with Mibefradil as a T-type $Ca^{2+}i$ Channels Inhibitor (T-형 $Ca^{2+}$ 채널 길항제인 Mibefradil을 첨가한 인간 정자의 첨체반응 관찰)

  • Lee, Jae-Ho;Son, Weon-Young;Lee, Jung-Ha;Lee, In-Sun;Kim, Young-Chan;Han, Ching-Tack
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.27 no.1
    • /
    • pp.9-14
    • /
    • 2000
  • Objective: The sperm acrosome reaction is a $Ca^{2+}$-dependent exocytotic event that is triggered by adhesion to the mammalian egg's zona pellucida. Previous studies suggested a role of $Ca^{2+}$ channels in acrosome reactions. This study was conducted to investigate the T-type calcium channel is operated in acrosome reaction of human spermatozoa. Method: Human semen samples were obtained from healthy donors with normal criteria. The spermatozoa were divided into five groups: Group 1 were non-treated as a control; Group 2 where spermatozoa were exposed to 5 ${\mu}M$ $Ca^{2+}$ A23187 $(Ca^{2+}i)$; Group 3 where spermatozoa were exposed 5 ${\mu}M$ $Ca^{2+}i$ and mibefradil; Group 4 where spermatozoa were exposed 5 ${\mu}M$ $Ca^{2+}i$ and nifedipine, and Group 5 where spermatozoa were treated with 5 ${\mu}M$ $Ca^{2+}i$ and both of mibefradil and nifedipine. Spermatozoa in all groups were retrieved after incubation for 15 and 30 minutes at $37^{\circ}C$. After staining with PSA-FITC, fluorescence was observed under a fluorescence microscope, and AR was evaluated on a total>100 spermatozoa/side. Result and Conclusion: We observed on acrosome reaction inhibition rate in human spermatozoa the various of concentration of mibefradil, nifedipine. Maximum response was noted with 1.0 ${\mu}M$ mibefradil and the decrease of acrosome reaction inhibition rate 45%. Nifedipine in acrosome reaction inhibition rate was only about 25%. The $Ca^{2+}i$-induced AR of spermatozoa was significantly suppressed by mibefradil. Incidence of the suppression was depending on concentration of mibefradil. Results from the present study suggest that the human spermatozoa possess T-type channel. The observation that reversible inhibitor of T channels in male germ cells provides a new mechanism of contraceptive action.

  • PDF

Pre-treatment condition and Curing method for Fabrication of Al 7075/CFRP Laminates (Al 7075/CFRP 적층 복합재료 제조를 위한 전처리 조건과 경화방법 연구)

  • 이제헌;김영환
    • Composites Research
    • /
    • v.13 no.4
    • /
    • pp.42-53
    • /
    • 2000
  • A study has been made to establish an optimum condition in the surface treatment and curing method that is important for the fabrication of Al 7075/CFRP laminates. PAA(Phosphoric Acid Anodizing) provided a good adhesive strength and FPL(Sulfuric / Sodium Dichromate Acid Etching) had a similar adhesive strength with PAA. On the other hand, the poor adhesive strength was shown on vapor degrease and CAA(Chromic Acid Anodizing). By using the atomic force microscope(AFM), it was found that the PAA oxide surface obviously had a greater degree of microroughness as compared to vapor degrease, CAA and FPL treated surfaces. These results support the concept of a mechanical interlocking of the adhesive with-in the oxide pores as the predominant adhesion mechanism. In curing methods, the adhesive strength of co-curing method was higher than that of secondary curing method. With respect to stability of specimen shape, the secondary curing method was better than co-curing method. DMA(Dynamic Mechanical Analysis) test revealed $T_g$ in curing times over 60 min is nearly same, so it is estimated they will have similar degree of curing and joint durability in using FM300M adhesive film.

  • PDF

Wear Characteristics of Cylinder-Liner Materials for Diesel Engine at Elevated Temperature (디젤엔진용 실린더 라이너 소재의 고온 마모특성)

  • Kim, Jin-Yeol;Kim, Jae-Hoon;Oh, Kwang-Keun;Lee, Seung-Hak;Chang, Joon-Yong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.11
    • /
    • pp.1131-1136
    • /
    • 2015
  • In a diesel engine, the wear of the cylinder liner occurs because of the continuous reciprocating motion of the piston ring. This wear reduces the performance of the diesel engine and shortens its service life. This study evaluated the wear characteristics of GT metal and a conventional metal used for cylinder liners using a ship's diesel engine. Wear tests were performed at temperatures of $25^{\circ}C$, $175^{\circ}C$, and $325^{\circ}C$, and under loads of 10 N, 30 N, and 50 N. The amount of wear, specific wear rate, and friction coefficient were evaluated for each condition. To analyze the wear mechanism, observations were made on an SEM. In the case of both metals, abrasive and adhesion wear occurred on the wear surfaces at room temperature, and corrosion wear was observed at high temperatures. The amount of wear and the specific wear rate of the GT metal were lower than those of the conventional metal at all temperatures, and hence it can be concluded that the wear characteristics of the GT metal are much better.

Wear Resistance of Crosslinked Ultra-high Molecular Weight Polyethylene (가교된 초고분자량 폴리에틸렌의 내마모성)

  • Im, Chae-Ik;Lee, Gwi-Jong;Jo, Jae-Yeong;Choe, Jae-Bong;Choe, Gwi-Won
    • Journal of Biomedical Engineering Research
    • /
    • v.20 no.1
    • /
    • pp.99-106
    • /
    • 1999
  • Ultra-high molecular weight polyethylene (UHMWPE) was crosslinked in the melt state to enhance wear resistance, Dicumyl peroxide (DCP) and triallyl cyanurate (TAC) was used as a crosslinking agent and a promoter, respectively. With increasing amount of DCP and TAC used, gel content of crosslinked UHMWPE (XUMPE) increased, while the melting temperature, crystallizaiton temperature, crystallinity, and tensile properties decreased. The results of pin-on-disk wear test and ball-on-disk test with small applied load showed reduced wear volumes of XUMPE from that of the unmodified UHMWPE. As the wear mechanism effected in the experimental condition of this study was thought to be deformation rather than adhesion or fatigue, a new parameter, the ratio of maximum contact stress to yield stress, was proposed to correlate well with observed wear resistance. In ball-on-disk wear test with larger applied load, XUMPE showed higher wear volumes than that of the unmodified UHMWPE which were accompanied with increased friction coefficients and surface roughness of the wear tracks. When contact stress was well above yield stress, the failure of XUMPE, as well as deformation, was thought to be much accelerated.

  • PDF

Genome-based Gene Expression Analysis of EGCG-mediated Cell Transformation Suppression Effect in Mouse Cell line Balb/c 3T3 A31-1-1 (마우스세포주 Balb/c 3T3 A31-1-1에서 Epigallocatechin gallate(EGCG)의 세포암화 억제효과에 대한 유전자발현 해석)

  • Jung, Ki-Kyung;Suh, Soo-Kyung;Kim, Tae-Gyun;Park, Moon-Suk;Lee, Woo-Sun;Park, Sue-Nie;Kim, Seung-Hee;Jung, Hai-Kwan
    • Environmental Mutagens and Carcinogens
    • /
    • v.26 no.4
    • /
    • pp.125-132
    • /
    • 2006
  • Previous studies showed that epigallocatechin gallate(EGCG) have substantial effects of suppressing the N-methyl-N'-nitro-N-nitrosoguanidine(MNNG)-initiated cell transformation process on the bases of foci formation frequency and loss of anchorage dependency. In this study we tried to clarify the molecular mechanism of suppressing the cell transformation process. Mouse cell line balb/c 3T3 A31-1-1 was exposed 2 days to MNNG followed by 15 days 12-O-tetradecanoylphorbol-13-acetate(TPA) treatment for our transformation process. EGCG was added after the time point of 24 hours exposure to TPA and incubated for 19 days. 2029 genes were selected in our transformation process that showed fold change value of 1.5 or more in the microarray gene expression analysis covering the mouse full genome. These genes were found to be involved mainly in the cell cycle pathway, focal adhesion, adherens junction, TGE-$\beta$ signaling, apoptosis, lysine degradation, insulin signaling, ECM-receptor interaction. Among the genes, we focused on the 631 genes(FC>0.5) reciprocally affected by EGCG treatment. Our study suggest that EGCG down-regulate the gene expressions of up stream signaling factors such as nemo like kinase with MAPK activity and PI3-Kinase, Ras GTPase and down stream factors such as cyclin D1, D2, H, T2, cdk6.

  • PDF

The Characteristic Analysis of Calcareous Deposit Films Formed on Steel Plate by Cathodic Current Process in Marine Environment (해양환경 중 음극전류 프로세스에 의해 강판에 형성된 석회질 피막의 특성 분석)

  • Park, Jun-Mu;Kang, Jae Wook;Choi, In-Hye;Lee, Seung-Hyo;Moon, Kyung-Man;Lee, Myeong-Hoon
    • Journal of the Korean institute of surface engineering
    • /
    • v.49 no.2
    • /
    • pp.166-171
    • /
    • 2016
  • Cathodic protection is widely recognized as the most cost effective and technically appropriate corrosion prevention methodology for the port, offshore structures, ships. When applying the cathodic protection method to metal facilities in seawater, on the surface of the metal facilities a compound of calcium carbonate($CaCO_3$) or magnesium hydroxide($Mg(OH)_2$) films are formed by $Ca^{2+}$ and $Mg^{2+}$ ions among the many ionic components dissolving in the seawater. And calcareous deposit films such as $CaCO_3$ and $Mg(OH)_2$ etc. are formed by the surface of the steel product. These calcareous deposit film functions as a barrier against the corrosive environment, leading to a decrease in current demand. On the other hand, the general calcareous deposit film is a compound like ceramics. Therefore, there may be some problems such as weaker adhesive power and the longer time of film formation uniting with the base metal. In this study, we tried to determine and control the optimal condition through applying the principle of cathodic current process to form calcareous deposit film of uniform and compact on steel plate. The quantity of precipitates was analyzed, and both the morphology, component and crystal structure were analyzed as well through SEM, EDS and XRD. And based on the previous analysis, it was elucidated mechanism of calcareous deposit film formed in the sacrificial anode type (Al, Zn) and current density (1, 3, $5A/m^2$) conditions. In addition, the taping test was performed to evaluate the adhesion.

A Study of carrier gas and ligand addition effect on MOCVD Cu film deposition (운반기체와 Ligand의 첨가가 MOCVD Cu 증착에 미치는 영향에 관한 연구)

  • 최정환;변인재;양희정;이원희;이재갑
    • Journal of the Korean Vacuum Society
    • /
    • v.9 no.3
    • /
    • pp.197-206
    • /
    • 2000
  • The deposition characteristics of MOCVD Cu using the (hfac)Cu(1,1-COD)(1,1,1,5,5,5-hexafluoro-2,4-pentadionato Cu(I) 1,5-cyclooctadine) have been investigated in terms of the effects of carrier gas such as hydrogen and argon as well as the effects of H(hfac) ligand addition. MOCVD Cu using a hydrogen carrier gas led to a higher deposition rate and lower resistivity than an argon carrier gas system. The improvement in the surface roughness of the MOCVD Cu films and the (111) preferred orientation texture was obtained by using a hydrogen carrier gas. However, the adhesion characteristics of the films showed relatively weaker compared to the Ar carrier gas system, probably due to the larger amount of F content in the films, which was confirmed by the AES analyses. When an additional H(hfac) ligand was added, the deposition rate was significantly enhanced in the case of an argon + H(hfac) carrier gas system while significant change in the deposition rate of MOCVD Cu was not observed in the case of the hydrogen carrier gas system. However, the addition of H(hfac) in both carrier gases led to lowering the resistivity of the MOCVD Cu films. In conclusion, this paper suggests the deposition mechanism of MOCVD Cu and is expected to contribute to the enhancement of smooth Cu films with a low resistivity by manipulating the deposition conditions such as the carrier gas and addition of H(hfac) ligand.

  • PDF