• Title/Summary/Keyword: adhesion friction

Search Result 248, Processing Time 0.027 seconds

EXPERIMENTAL STUDIES OF SCUFFING MECHANISM IN OIL LUBRICATED PISTON-RING/CYLINDER SLIDING CONTACTS

  • Shi, H.S.;Wang, H.;Hu, Y.Z.
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.415-416
    • /
    • 2002
  • Experiments have been conducted to investigate scuffing mechanism in oil lubricated piston-ring /cylinder sliding contacts. Samples were extracted from actual components to simulate the real contact geometry and other influencing conditions. A standard test machine. with some modifications, has been used for the investigation of the effects of surface temperature load and sliding velocity. preliminary tests were carried out to find the critical temperature of scuffing using gradient temperature under a constant load, reciprocating frequency and stroke. The experimental and analytical results show that a transition from lubricated contact to adhesion, accompanied by the phenomena such as material transfer between the two sliding surfaces, local contact welding and temperature rise, and sharp increase in friction coefficient, appears to contribute to the final failure of scuffing.

  • PDF

Molecular Dynamics Simulation of Deformation of Polymer Resist in Nanoimpirnt Lithography (나노임프린트 리소그래피에서의 폴리머 레지스트의 변형에 관한 분자 동역학 시뮬레이션)

  • Kang, Ji-Hoon;Kim, Kwang-Seop;Kim, Kyung-Woong
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.410-415
    • /
    • 2004
  • Molecular dynamics simulations of nanoimprint lithography in which a stamp with patterns is pressed onto amorphous poly-(methylmethacrylate) (PMMA) surface are performed to study the deformation of polymer. Force fields including bond, angle, torsion, inversion, van der Waals and electrostatic potential are used to describe the intermolecular and intramolecular force of PMMA molecules and stamp. Periodic boundary condition is used in horizontal direction and $Nos\acute{e}$-Hoover thermostat is used to control the system temperature. As the simulation results, the adhesion forces between stamp and polymer are calculated and the mechanism of deformation are investigated. The effects of the adhesion force and friction force on the polymer deformation are also studied to analyze the pattern transfer in nanoimprint lithography. The mechanism of polymer deformation is investigated by means of inspecting the indentation process, molecular configurational properties, and molecular configurational energies.

  • PDF

Influence of Particle Properties of Crushed Sand on the Qualities of Concrete (부순모래의 입자특성이 콘크리트의 품질에 미치는 영향)

  • Yoo Seung-Yeup;Sohn Yu-Shin;Lee Seung-Hoon;Lee Gun-Cheol;Yoon Gi-Won;Han Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2005.05a
    • /
    • pp.89-92
    • /
    • 2005
  • This study investigates influence of particle properties of crushed sand on the duality of concrete. The test shows that an increase of fineness modulus(FM) resulted in high slump and air contents, while compressive strength decreased due to decreased adhesion with reduction of surface area. As grain shape become rounder, the slump of concrete increased, due to reduction of internal friction, and increased air contents. The reduction of adhesion by abrasion of surface declined compressive strength during the process of manufacturing crushed sand. Increase of powder contents decreased slump and it also decreased air contents due to the effect of filling air void. In addition. using powder contents increased compressive strength, but could not find any difference of bleeding and tensile strength with particle properties.

  • PDF

Joint Characteristics of Lubricant-Impregnated Nylon and Metals (윤활제 함침 나일론과 금속의 접합특성)

  • Chang, Yoon-Sang;Kang, Suk-Choon;Ho, Kwang-Il
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.2 no.3
    • /
    • pp.84-89
    • /
    • 2003
  • The joint method and characteristics of lubricant Impregnated MC nylon and metal are analyzed. Considering the productivity and economics, two materials are Joined with the process of turning, knurling, and induction heating. The Joint strength is determined by adhesion of the melted nylon, the size of knurl, and the interference from the difference of the diameters. The parameters affecting induction heating process are analyzed. The adhesion strength of the melted nylon is measured. Finally the joint strength is analyzed in the environments of low, room, and high temperature. The nylon/metal Joined material is expected to be widely used as the sliding machine elements with good friction and shear strength.

  • PDF

Uplift Capacity and Creep Behavior of Concrete Pile Driven in Clay (점토지반에 타입된 콘크리트 말뚝의 인발저항 및 크리프 거동)

  • 신은철;김종인;박정준;이학주
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2001.03a
    • /
    • pp.371-378
    • /
    • 2001
  • The working load at pile is sometimes subjected to not only compression load but also lateral load and uplift forces. Pile foundation is essential and uplift load can be applied because of buoyancy, a typhoon, wind or seismic forces. This study was carried out to determine the uplift capacity of concrete pile foundation driven in clay. Pile was driven in clay, between pile and clay adhesion factor was estimated, and it is the mean value between the cast-in-situ-pile and steel pipe pile. When pile foundation is loaded for long time, creep behavior occurs. The behavior of creep is originated from the clay creep contacted with pile. The creep behavior of pile foundation embedded in clay is heavily depended on the thickness of clay around the pile shaft, pore water pressure in clay, and creep behavior of clay.

  • PDF

Molecular Dynamics Simulation of Deformation of Polymer Resist in Nanoimpirnt Lithography (나노임프린트 리소그래피에서의 폴리머 레지스트의 변형에 관한 분자 동역학 시뮬레이션)

  • Kim Kwang-Seop;Kim Kyung-Woong;Kang Ji-Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.6 s.237
    • /
    • pp.852-859
    • /
    • 2005
  • Molecular dynamics simulations of nanoimprint lithography in which a stamp with patterns is pressed onto amorphous poly-(methylmethacrylate) (PMMA) surface are performed to study the deformation of polymer. Force fields including bond, angle, torsion, inversion, van der Waals and electrostatic potential are used to describe the intermolecular and intramolecular force of PMMA molecules and stamp. Periodic boundary condition is used in horizontal direction and Nose-Hoover thermostat is used to control the system temperature. As the simulation results, the adhesion forces between stamp and polymer are calculated and the mechanism of deformation are investigated. The effects of the adhesion and friction forces on the polymer deformation are also studied to analyze the pattern transfer in nanoimprint lithography. The mechanism of polymer deformation is investigated by means of inspecting the indentation process, molecular configurational properties, and molecular configurational energies.

Analysis of Nano-contact Between Nano-asperities Using Atomic Force Microscopy (나노스케일 표면돌기 간의 미세접촉에 대한 해석)

  • Ahn, Hyo-Sok;Jang, Dong-Young
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.18 no.4
    • /
    • pp.369-374
    • /
    • 2009
  • In micro/nano-scale contacts in MEMS and NEMS, capillary and van der Waals forces generated around contacting micro-asperities significantly influence the performance of concerning device as they are closely related to adhesion and stiction of interacting surfaces. In this regard, it is of prime importance to accurately estimate the magnitude of surface forces so that an optimal solution for reducing friction and adhesion of micro/nano-surfaces may be obtained We introduced an effective method to calculate these surface forces based on topography information obtained from an atomic force microscope. This method was used to calculate surface forces generated in the contact interface formed between diamond-like carbon coating and $Si_3N_4$ ball. This method is shown to effectively demonstrate the influence of capillary force in the contact area, especially in humid atmosphere.

  • PDF

Measurement of Adhesion Strength for Ceramic Sheet (세라믹 박판의 접착 강도 측정)

  • Huh, Y.H.;Kim, D.I.;Kim, D.J.;Lee, K.;Kim, D.
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1798-1802
    • /
    • 2007
  • Adhesion strength of single layer ceramic capacitor sheet was measured using a peel testing system developed in this study. The peel test specimens with various dimensions were prepared from the ceramic sheet cast on the PET film. In peel test, the sheet specimen was adhered on the glass jig floating on the liquid media, which was designed to minimize the friction, and the specimen was then pulled up by micro-actuator. During the separation of the sheet from the PET film, peel force was measured. To normalize the testing condition, 3 different widths of the specimen were selected: 5, 10 and 20 mm. was used Furthermore, testing speed effect was investigated in this study. From the resullts using various testing conditions, the standard method for the peel strength testing may be suggested. Based on the testing condition, effect of peel angle on the strength was experimentally examined. It was found that the adhesive strength for the ceramic sheet is nearly identical, irrespective of the specimen width ranged from 5 to 20 mm, while the adhesive strength was increased with increasing testing speed. Furthermore, the strength was shown to be dependent on the peel angle.

  • PDF

The Effect of Process Condition in Nano-molding on the Property of SAM (self-assembled monolayer) (나노성형 공정 조건이 자기조립 단분자막의 이형 특성에 미치는 영향)

  • Lee, Nam-Seok;Han, Jeong-Won;Kang, Shin-Ill
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.10a
    • /
    • pp.83-86
    • /
    • 2005
  • In this study, SAM (self-assembled monolayer) was applied as an anti-adhesion layer in the nano molding process, to reduce the surface energy between the nano-stamper and the moldeded polymeric nano patterns. Before depositing SAM on the stamper, the nickel stamper was pretreated to remove oxide on the nickel stamper surface. Then, using the solution deposition method, alkanethiol SAM as an anti-adhesion layer was deposited on nickel surface. To examine the effectiveness of the SAM deposition on the metallic nano stamper, the contact angle and the lateral friction force were measured at the actual processing temperature and pressure for the case of nano compression molding and at the actual UV dose for the case of nano UV molding. The surface energy due to SAM deposition on the nickel nano stamper markedly decreased and the high hydrophobic quality of SAM on the nickel stamper maintained under the actual molding environments.

  • PDF

A New Perspective on the Advanced Microblade Cutting Method for Reliable Adhesion Measurement of Composite Electrodes

  • Song, Jihun;Shin, Dong Ok;Byun, Seoungwoo;Roh, Youngjoon;Bak, Cheol;Song, Juhye;Choi, Jaecheol;Lee, Hongkyung;Kwon, Tae-Soon;Lee, Young-Gi;Ryou, Myung-Hyun;Lee, Yong Min
    • Journal of Electrochemical Science and Technology
    • /
    • v.13 no.2
    • /
    • pp.227-236
    • /
    • 2022
  • The microblade cutting method, so-called SAICAS, is widely used to quantify the adhesion of battery composite electrodes at different depths. However, as the electrode thickness or loading increases, the reliability of adhesion values measured by the conventional method is being called into question more frequently. Thus, herein, a few underestimated parameters, such as friction, deformation energy, side-area effect, and actual peeing area, are carefully revisited with ultrathick composite electrodes of 135 ㎛ (6 mAh cm-2). Among them, the existence of side areas and the change in actual peeling area are found to have a significant influence on measured horizontal forces. Thus, especially for ultrahigh electrodes, we can devise a new SAICAS measurement standard: 1) the side-area should be precut and 2) the same actual peeling area must be secured for obtaining reliable adhesion at different depths. This guideline will practically help design more robust composite electrodes for high-energy-density batteries.