• Title/Summary/Keyword: address discharge

Search Result 181, Processing Time 0.023 seconds

Discharge Characteristics of Addressing Period in the ADS driving scheme of AC-PDP

  • Kong, Hyuk-Jun;Yang, Jin-Ho;Kim, Joong-Kyun;Whang, Ki-Woong
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2000.01a
    • /
    • pp.121-122
    • /
    • 2000
  • The understanding of reset scheme is essential for the driving of AC PDP (Plasma Display Panel). The characteristics of reset period of AC PDP was examined with the variation of pulse time and voltage in the ADS (Address Display Separated) driving method presented by Fujitsu,. The addressing characteristics showed drastic change as a function of the erasing time and addressing pulse width. In this paper, these results were explained by the change of wall charge variation, and it was estimated with the currents through each electrode.

  • PDF

LGE's Strategy for PDP TV

  • Kim, Jae-Sung;Lee, Sung-Hyun;Ahn, Sung-Yong;Ahn, Young-Joon;Ryu, Jae-Hwa;Yoon, Kwang-Ho
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07a
    • /
    • pp.71-74
    • /
    • 2005
  • There have been various efforts to achieve a better PDP TV, which have low power consumption, high image quality and low price. As the results, the power consumption of LG's new 42 inch HD PDP could be lower than 42 inch LCD under the general movie display load condition. And the address discharge time lag of ${\sim}1\;{\mu}s$ for 42 and 50 inch XGA single scan by which the cost can be reduced and image quality can be improved was achieved by using new MgO material and driving waveform. In addition, we have suggested TCA (Triangular Color pixel Arrangement) cell structure for realizing the full HDTV of 60inch diagonal size, which has $1920{\times}1080$ resolution. The luminous efficiency of the suggested TCA structure has been increased about 40% compared with that of the conventional cell structure.

  • PDF

A Study on the Space Charge Effect of Display Discharge for Plasma Display Pane (플라즈마 디스플레이 패널의 표시방전에 미치는 공간전하의 영향에 관한 연구)

  • Son, Duk-Won;Ryeom, Jeong-Duk
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.35-38
    • /
    • 2005
  • Full-HDTV급 PDP를 구현하기 위해서는 고속 어드레스 구동이 필요하며 이러한 기술은 AWD 구동방식으로 구현하는 것이 용이하다. AWD 구동방식은 하나의 sustain 펄스 휴지기안에 복수개의 scan 펄스를 설치하는 것이 바람직하며 이 경우 sustain 펄스와 sustain 펄스 사이가 넓어진다. 본 연구에서는 이 휴지기를 고려한 sustain 방전특성을 해석하였다. 실험결과 address 바로 다음에 나오는 첫 번째 sustain 펄스는 공간전하 의존도가 높으며 두 번째 펄스부터는 공간전하 의존도보다는 벽전하 의존도가 더 높다는 사실을 알았다. 또한 수십${\mu}s$를 가지는 휴지기간에도 균일한 sustain 동작마진을 얻을 수 있음을 알았다.

  • PDF

A Study on the Discharge Characteristics by the narrow width address pulse for Plasma Display Panel (플라즈마 디스플레이 패널의 세폭 어드레스 방전특성에 관한 연구)

  • Ryeom, Jeong-Duk;Kwak, Hee-Ro
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.205-210
    • /
    • 2006
  • 어드레스-표시 동시 구동방식에 의한 고속 구동기술을 개발하기 위하여 PDP의 어드레스 기간에 인가하는 주사 펄스의 폭에 의한 방전특성을 실험용 PDP를 사용하여 실험하였다. 본 연구에서는 주사 펄스의 폭과 주사 펄스와 이어서 인가되는 첫 번째 서스테인 펄스 사이의 시간간격을 변화시키면서 어드레스 방전특성을 측정하였다. 실험결과 주사펄스의 폭이 $1.3{\mu}s$ 이하로 좁아지면 어드레스 방전의 벽전하 대신에 공간전하로 서스테인 방전이 유도되므로 각 전극에 인가하는 펄스의 전압조건이 달라져야 한다는 것을 알았다 또한 주사 펄스폭이 좁아지면 어드레스 방전개시전압이 크게 상승함을 알았다. 실험결과 12개의 서브필드를 가지며 1080개의 주사선을 가지는 full-HDTV급 PDP를 구동시킬 수 있는 조건인 $0.7{\mu}s$ 수준의 주사 펄스폭 이상에서 약 10V의 일정한 서스테인 구동마진이 얻어짐을 알았다.

  • PDF

Studies on the characteristics of an address discharge time lag on the effect of a wall voltage loss in PDPs (PDP에서 벽전압 손실이 어드레스 방전 지연 시간에 미치는 영향에 대한 연구)

  • Kim, Ha-Na;Kim, Tae-Sik;Shin, Bhum-Jae
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.153-156
    • /
    • 2009
  • 본 논문에서는 어드레스 구간에서 벽전압 손실을 발생시키는 원인을 분석하고, 특히 어드레스 구간에서 각 전극간의 다양한 전위 조건이 어드레스 방전 지연 시간에 미치는 영향을 조사하였다. 실험 결과를 통하여 벽전압 손실은 전극간의 셀 전압이 동시 방전점에서 비방전 영역으로 이동한 조건에서는 영향을 받지 않지만, 전극간의 셀 전압이 방전 개시 전압의 조건에서는 큰 영향을 받게 되는 것을 확인하였다. 특히, XY 전극간의 전위조건에 의한 벽전압 손실보다는 AY 전극간의 전위 조건에 의한 벽전압 손실이 어드레스 방전 지연 시간 특성을 저해하는 주요한 원인임을 확인하였다.

  • PDF

Data-Driven Approach for Lithium-Ion Battery Remaining Useful Life Prediction: A Literature Review

  • Luon Tran Van;Lam Tran Ha;Deokjai Choi
    • Smart Media Journal
    • /
    • v.11 no.11
    • /
    • pp.63-74
    • /
    • 2022
  • Nowadays, lithium-ion battery has become more popular around the world. Knowing when batteries reach their end of life (EOL) is crucial. Accurately predicting the remaining useful life (RUL) of lithium-ion batteries is needed for battery health management systems and to avoid unexpected accidents. It gives information about the battery status and when we should replace the battery. With the rapid growth of machine learning and deep learning, data-driven approaches are proposed to address this problem. Extracting aging information from battery charge/discharge records, including voltage, current, and temperature, can determine the battery state and predict battery RUL. In this work, we first outlined the charging and discharging processes of lithium-ion batteries. We then summarize the proposed techniques and achievements in all published data-driven RUL prediction studies. From that, we give a discussion about the accomplishments and remaining works with the corresponding challenges in order to provide a direction for further research in this area.

Influence of the Nozzle Contraction Angles of Gaseous Extinguishing Systems on Discharge Noise (가스계 소화시스템 노즐 수축각이 방출소음에 미치는 영향)

  • Kim, Yo-Hwan;Yoo, Han-Sol;Hwang, In-Ju;Kim, Youn-Jea
    • Fire Science and Engineering
    • /
    • v.33 no.4
    • /
    • pp.77-82
    • /
    • 2019
  • Fire extinguishing systems are essential equipment in all indoor facilities to address unexpected fire scenarios, and appropriate fire extinguishing agent should be used depending on the place and object to protect. Among these, gaseous fire-extinguishing systems are used to protect electronic equipment. Therefore, inert gases that do not undergo chemical reactions are used mainly in those systems. On the other hand, recently, owing to the high integration of electronic equipment, there are some cases, in which large noise generated from gaseous systems damage the electronic equipment. In this study, numerical analysis of the discharge noise with various nozzle contraction angles was carried out to improve the gas fire extinguishing system. Numerical analysis was carried out using ANSYS FLUENT ver 18.1. The causes of the noise were elucidated using the swirl distribution. The noise level of the modified model was reduced by approximately 6 dB compared to the reference model, which is similar to the result of a previous study, confirming the validity of the method.

Characteristic Analysis of Lithium-ion Battery and Lead-acid Battery using Battery Simulator (배터리 시뮬레이터를 이용한 리튬이온 배터리와 납축전지 특성분석)

  • Yongho Yoon
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.24 no.2
    • /
    • pp.127-132
    • /
    • 2024
  • Recently, secondary batteries, commonly known as rechargeable batteries, find widespread applications across various industries. Particularly valued for their compact and lightweight characteristics, they play a crucial role in diverse portable electronic devices such as smartphones, laptops, and tablets, offering high energy density and efficient charge-discharge capabilities. Moreover, they serve as vital components in electric vehicles and contribute significantly to the field of renewable energy as part of Energy Storage Systems(ESS). However, despite advancements in this technology, issues such as reduced lifespan, cracking, damage, and even the risk of fire can arise due to excessive charging and discharging of secondary batteries. To address these challenges, Battery Management System(BMS) are employed to protect against overcharging and improve overall performance. Nevertheless, understanding the protective range settings of BMS using lithium-ion batteries, the most commonly used secondary batteries, and lead-acid batteries can be challenging. Therefore, this paper aims to utilize a battery charge-discharge tester and simulator to investigate the charging and discharging characteristics of lithium-ion batteries and lead-acid batteries, addressing the associated challenges of reduced lifespan, cracking, damage, and fire hazards in secondary batteries.

New Gray Scale Implementaion Method for Improving Dynamic False Contours in ac PDPs (동영상 의사윤곽 개선을 위한 새로운 ac PDP 계조구현 방법)

  • Jung Young-Ho;Jeong Ju Young
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.41 no.1
    • /
    • pp.1-8
    • /
    • 2004
  • We developed a new PDP gray scale implementation method on the basis of the quantized memory addressing(QMA) principle. We defined three wall charge states; 'fully-on', 'off', and 'half-on', by controlling the width of address pulses. With these three wall charge state, we were able to express 255 level gray scale with only 7 sub-fields. Furthermore, in contrast to the conventional driving methods, the sub-field combinations for any two adjacent gray levels differ by only 1 sub-field, at worst, and therefore, eliminate the dynamic false contours. Since this method use 7 sub-field, the sustain discharge Period is increased by more than $70\%$ compared to the 12 sub-field method which reduces the dynamic false contours.

Wire Optimization and Delay Reduction for High-Performance on-Chip Interconnection in GALS Systems

  • Oh, Myeong-Hoon;Kim, Young Woo;Kim, Hag Young;Kim, Young-Kyun;Kim, Jin-Sung
    • ETRI Journal
    • /
    • v.39 no.4
    • /
    • pp.582-591
    • /
    • 2017
  • To address the wire complexity problem in large-scale globally asynchronous, locally synchronous systems, a current-mode ternary encoding scheme was devised for a two-phase asynchronous protocol. However, for data transmission through a very long wire, few studies have been conducted on reducing the long propagation delay in current-mode circuits. Hence, this paper proposes a current steering logic (CSL) that is able to minimize the long delay for the devised current-mode ternary encoding scheme. The CSL creates pulse signals that charge or discharge the output signal in advance for a short period of time, and as a result, helps prevent a slack in the current signals. The encoder and decoder circuits employing the CSL are implemented using $0.25-{\mu}m$ CMOS technology. The results of an HSPICE simulation show that the normal and optimal mode operations of the CSL achieve a delay reduction of 11.8% and 28.1%, respectively, when compared to the original scheme for a 10-mm wire. They also reduce the power-delay product by 9.6% and 22.5%, respectively, at a data rate of 100 Mb/s for the same wire length.