• Title/Summary/Keyword: address comparison circuit

Search Result 2, Processing Time 0.016 seconds

Design of a redundancy control circuit for 1T-SRAM repair using electrical fuse programming (전기적 퓨즈 프로그래밍을 이용한 1T-SRAM 리페어용 리던던시 제어 회로 설계)

  • Lee, Jae-Hyung;Jeon, Hwang-Gon;Kim, Kwang-Il;Kim, Ki-Jong;Yu, Yi-Ning;Ha, Pan-Bong;Kim, Young-Hee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.8
    • /
    • pp.1877-1886
    • /
    • 2010
  • In this paper, we design a redundancy control circuit for 1T-SRAM repair using electrical fuse programming. We propose a dual port eFuse cell to provide high program power to the eFuse and to reduce the read current of the cell by using an external program supply voltage when the supply power is low. The proposed dual port eFuse cell is designed to store its programmed datum into a D-latch automatically in the power-on read mode. The layout area of an address comparison circuit which compares a memory repair address with a memory access address is reduced approximately 19% by using dynamic pseudo NMOS logic instead of CMOS logic. Also, the layout size of the designed redundancy control circuit for 1T-SRAM repair using electrical fuse programming with Dongbu HiTek's $0.11{\mu}m$ mixed signal process is $249.02 {\times}225.04{\mu}m^{2}$.

Comparison of Achievable Efficiency for Different Resonator Structures in a Magnetic Resonance-based Wireless Power Transfer System (자기 공진 기반의 무선전력전송 시스템에서 송수신 공진기의 구조 차이에 따른 달성 가능한 효율 비교)

  • Lee, Kisong;Yang, Haekwon;Ra, In-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.5
    • /
    • pp.1035-1041
    • /
    • 2017
  • In magnetic resonance-based wireless power transfer (WPT) systems, frequency splitting phenomenon, in which power transfer efficiency (PTE) decreases seriously as resonators are close to each other, is the problem that we should address for reliable power transfer in short distance. In this paper, we present WPT systems using an equivalent circuit model and analyze PTE and marginal coupling coefficient ($k_{split}$) where the frequency splitting occurs. In addition, we perform circuit-level simulations using Advanced Design System, and show that the achievable PTE is different for the structures of resonators when k>$k_{split}$. We confirm that higher PTE can be ensured as k increases in the case of identical resonators, while PTE is degraded as k increases in the case of non-identical resonators. Therefore, in short distance, in which k>$k_{split}$, it is more efficient for achieving reliable PTE to use identical resonators rather than non-identical resonators.