• Title/Summary/Keyword: additive-quadratic mapping

Search Result 28, Processing Time 0.02 seconds

ON THE SOLUTION OF A MULTI-VARIABLE BI-ADDITIVE FUNCTIONAL EQUATION I

  • Park, Won-Gil;Bae, Jae-Hyeong
    • The Pure and Applied Mathematics
    • /
    • v.13 no.4 s.34
    • /
    • pp.295-301
    • /
    • 2006
  • We Investigate the relation between the multi-variable bi-additive functional equation f(x+y+z,u+v+w)=f(x,u)+f(x,v)+f(x,w)+f(y,u)+f(y,v)+f(y,w)+f(z,u)+f(z,v)+f(z,w) and the multi-variable quadratic functional equation g(x+y+z)+g(x-y+z)+g(x+y-z)+g(-x+y+z)=4g(x)+4g(y)+4g(z). Furthermore, we find out the general solution of the above two functional equations.

  • PDF

SOLUTION OF A VECTOR VARIABLE BI-ADDITIVE FUNCTIONAL EQUATION

  • Park, Won-Gil;Bae, Jae-Hyeong
    • Communications of the Korean Mathematical Society
    • /
    • v.23 no.2
    • /
    • pp.191-199
    • /
    • 2008
  • We investigate the relation between the vector variable bi-additive functional equation $f(\sum\limits^n_{i=1} xi,\;\sum\limits^n_{i=1} yj)={\sum\limits^n_{i=1}\sum\limits^n_ {j=1}f(x_i,y_j)$ and the multi-variable quadratic functional equation $$g(\sum\limits^n_{i=1}xi)\;+\;\sum\limits_{1{\leq}i<j{\leq}n}\;g(x_i-x_j)=n\sum\limits^n_{i=1}\;g(x_i)$$. Furthermore, we find out the general solution of the above two functional equations.

FUNCTIONAL EQUATIONS IN THREE VARIABLES

  • Boo, Deok-Hoon;Park, Chun-Gil;Wee, Hee-Jung
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.17 no.2
    • /
    • pp.169-190
    • /
    • 2004
  • Let r, s be nonzero real numbers. Let X, Y be vector spaces. It is shown that if a mapping f : $X{\rightarrow}Y$ satisfies f(0) = 0, and $$sf(\frac{x+y{\pm}z}{r})+f(x)+f(y){\pm}f(z)=sf(\frac{x+y}{r})+sf(\frac{y{\pm}z}{r})+sf(\frac{x{\pm}z}{r})$$, or $$sf(\frac{x+y{\pm}y}{r})+f(x)+f(y){\pm}f(z)=f(x+y)+f(y{\pm}z)+f(x{\pm}z)$$ for all x, y, $z{\in}X$, then there exist an additive mapping A : $X{\rightarrow}Y$ and a quadratic mapping Q : $X{\rightarrow}Y$ such that f(x) = A(x) + Q(x) for all $x{\in}X$. Furthermore, we prove the Cauchy-Rassias stability of the functional equations as given above.

  • PDF

STABILITY AND SOLUTION OF TWO FUNCTIONAL EQUATIONS IN UNITAL ALGEBRAS

  • Yamin Sayyari;Mehdi Dehghanian;Choonkil Park
    • Korean Journal of Mathematics
    • /
    • v.31 no.3
    • /
    • pp.363-372
    • /
    • 2023
  • In this paper, we consider two functional equations: (1) h(𝓕(x, y, z) + 2x + y + z) + h(xy + z) + yh(x) + yh(z) = h(𝓕(x, y, z) + 2x + y) + h(xy) + yh(x + z) + 2h(z), (2) h(𝓕(x, y, z) - y + z + 2e) + 2h(x + y) + h(xy + z) + yh(x) + yh(z) = h(𝓕(x, y, z) - y + 2e) + 2h(x + y + z) + h(xy) + yh(x + z), without any regularity assumption for all x, y, z in a unital algebra A, where 𝓕 : A3 → A is defined by 𝓕(x, y, z) := h(x + y + z) - h(x + y) - h(z) for all x, y, z ∈ A. Also, we find general solutions of these equations in unital algebras. Finally, we prove the Hyers-Ulam stability of (1) and (2) in unital Banach algebras.

FUNCTIONAL EQUATIONS ASSOCIATED WITH INNER PRODUCT SPACES

  • Park, Choonkil;Huh, Jae Sung;Min, Won June;Nam, Dong Hoon;Roh, Seung Hyeon
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.21 no.4
    • /
    • pp.455-466
    • /
    • 2008
  • In, [7], Th.M. Rassias proved that the norm defined over a real vector space V is induced by an inner product if and only if for a fixed integer $n{\geq}2$ $$n{\left\|{\frac{1}{n}}{\sum\limits_{i=1}^{n}}x_i{\left\|^2+{\sum\limits_{i=1}^{n}}\right\|}{x_i-{\frac{1}{n}}{\sum\limits_{j=1}^{n}x_j}}\right\|^2}={\sum\limits_{i=1}^{n}}{\parallel}x_i{\parallel}^2$$ holds for all $x_1,{\cdots},x_{n}{\in}V$. Let V,W be real vector spaces. It is shown that if a mapping $f:V{\rightarrow}W$ satisfies $$(0.1){\hspace{10}}nf{\left({\frac{1}{n}}{\sum\limits_{i=1}^{n}}x_i \right)}+{\sum\limits_{i=1}^{n}}f{\left({x_i-{\frac{1}{n}}{\sum\limits_{j=1}^{n}}x_i}\right)}\\{\hspace{140}}={\sum\limits_{i=1}^{n}}f(x_i)$$ for all $x_1$, ${\dots}$, $x_{n}{\in}V$ $$(0.2){\hspace{10}}2f\(\frac{x+y}{2}\)+f\(\frac{x-y}{2} \)+f\(\frac{y}{2}-x\)\\{\hspace{185}}=f(x)+f(y)$$ for all $x,y{\in}V$. Furthermore, we prove the generalized Hyers-Ulam stability of the functional equation (0.2) in real Banach spaces.

  • PDF

STABILITY OF FUNCTIONAL EQUATIONS ASSOCIATED WITH INNER PRODUCT SPACES: A FIXED POINT APPROACH

  • Park, Choonkil;Hur, Jae Sung;Min, Won June;Nam, Dong Hoon;Roh, Seung Hyeon
    • Korean Journal of Mathematics
    • /
    • v.16 no.3
    • /
    • pp.413-424
    • /
    • 2008
  • In [21], Th.M. Rassias proved that the norm defined over a real vector space V is induced by an inner product if and only if for a fixed integer $n{\geq}2$ $$n{\parallel}\frac{1}{n}\sum\limits_{i=1}^{n}x_i{\parallel}^2+\sum\limits_{i=1}^{n}{\parallel}x_i-\frac{1}{n}\sum\limits_{j=1}^{n}x_j{\parallel}^2=\sum\limits_{i=1}^{n}{\parallel}x_i{\parallel}^2$$ holds for all $x_1,{\dots},x_n{\in}V$. We consider the functional equation $$nf(\frac{1}{n}\sum\limits^n_{i=1}x_i)+\sum\limits_{i=1}^{n}f(x_i-\frac{1}{n}\sum\limits_{j=1}^{n}x_j)=\sum\limits_{i=1}^nf(x_i)$$ Using fixed point methods, we prove the generalized Hyers-Ulam stability of the functional equation $$(1)\;2f(\frac{x+y}{2})+f(\frac{x-y}{2})+f(\frac{y-x}{2})=f(x)+f(y)$$.

  • PDF

ON THE STABILITY OF A MIXED TYPE FUNCTIONAL EQUATION

  • Lee, Sang-Baek;Park, Won-Gil;Bae, Jae-Hyeong
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.19 no.1
    • /
    • pp.69-77
    • /
    • 2006
  • The generalized Hyers-Ulam stability problems of the mixed type functional equation $$f\({\sum_{i=1}^{4}xi\)+\sum_{1{\leq}i<j{\leq}4}f(x_i+x_j)=\sum_{i=1}^{4}f(x_i)+\sum_{1{\leq}i<j<k{\leq}4}f(x_i+X_j+x_k)$$ is treated under the approximately even(or odd) condition and the behavior of the quadratic mappings and the additive mappings is investigated.

  • PDF