• Title/Summary/Keyword: additive oil

Search Result 185, Processing Time 0.021 seconds

Fuel Characteristics of Pitch Pine and Mongolian Oak Pellets Fabricated with Coffee Waste and Used Frying Oil as an Additive Using a Pilot-scale Flat-die Pellet Mills (식품부산물인 커피박과 폐식용유를 첨가제로 사용하여 파일럿 규모의 평다이 성형기로 제조한 리기다소나무 및 신갈나무 펠릿의 연료적 특성)

  • Yang, In;Jin, Xuanjun;Han, Gyu-Seong
    • New & Renewable Energy
    • /
    • v.18 no.3
    • /
    • pp.23-31
    • /
    • 2022
  • This study evaluated the potential of coffee waste (CW) and used frying oil (UFO) as an additive in the production of pitch pine (PIP) and Mongolian oak (MOK) pellets. Ash contents obtained from CW and UFO were 0.5% and <0.1%, respectively. The calorific values of UFO (31.4 MJ/kg) and CW (26.3 MJ/kg) are higher than PIP (20.6 MJ/kg) and MOK (19.1 MJ/kg). For pellets fabricated using a pilot-scale flat-die pellet mill, regardless of fabricating conditions, moisture content (MC) and bulk density of PIP and MOK pellets satisfied the A1 wood pellet standard for residential and small-scale commercial uses, as designated by the National Institute of Forest Science (NIFOS) of the Republic of Korea. When CW was used as an additive, durability of PIP pellets made with 12%-MC sawdust and MOK pellets increased. The optimal conditions for producing PIP and MOK pellets could be by adding 20 mesh CW as an additive and the using of 12%-MC sawdust. However, durability of PIP pellets and ash content MOK pellets did not satisfy the A1 wood pellet standard of NIFOS. Thus, further research is needed to improve the properties of wood pellets with additives.

Wear Properties of Vegetable Oils Formulated with Some Antiwear Additives (내마모첨가제가 첨가된 식물성유의 마모특성연구)

  • 최웅수;안병길;정용진;권오관
    • Tribology and Lubricants
    • /
    • v.12 no.3
    • /
    • pp.6-11
    • /
    • 1996
  • There has been a growing concern for the use of mineral oil based lubricants because of the worldwide interest in environmental issues. This has prompted the use of vegetable oils as more environmentally acceptable base fluids. In view of this, four-ball wear test was carried out to investigate the tribological behavior of selected vegetable oils blended with ZDDP, TCP and DBP under high speed and temperate conditions. Of the additive evaluated, the new additive, DBP has provided antiwear performance superior to the two other additives more commonly used. This superior performance by DBP is probably caused by different wear mechanism. This wear mechanism has been evidenced by the surface analysis of worn balls conducted using optical microscope and EDAX.

Extinguishing Characteristics of Cooking Oil Fire by Water Mist added with AFFF Agent (수성막포 약제를 첨가한 미분무수의 식용유 화재 소화특성)

  • Shin, Chang-Sub;Kim, Seong-Yong
    • Journal of the Korean Society of Safety
    • /
    • v.24 no.5
    • /
    • pp.21-27
    • /
    • 2009
  • Effective way of cooking oil fire extinguishment is using water mist system which has cooling and smothering effects. Low pressure water mist system has advantage because it is compatible with existing sprinkler systems. To increase the effectiveness of low pressure water mist system, additives can be used which increase the momentum of water particle and the chemical effect. In this experiment, aqueous film forming form(AFFF) agent is used as additive and the effect of additive concentration and water pressure are experimented. For the extinguishment of cooking oil fire such as soybean and olive oils, AFFF agent is effective and can decrease the fire extinguishing time and water consumption.

Effect of Filler and Additive on Performance of Cycloaliphatic Epoxy used for Outdoor Insulators (싸이클로알리파틱 에폭시 절연재료의 옥외 성능에 미치는 층전재 및 첨가물의 영향)

  • 허창수;연복희;서유진;이기택;김남렬;황명근;김완태
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07a
    • /
    • pp.431-434
    • /
    • 2002
  • This paper reports on the evaluation of weathering resistance, tracking test and salt-fog of various kinds of cycloaliphatic epoxy systems. It was found that UV irradiation induced the loss of hydrophobic level due to the chain scission attack at the surface. It could be seen that samples containing an UV absorbent/antioxidant and a silicone oil additive knave a good performance in weathering ageing, whereas ATH filled ones have high resistance against tracking failure than others. Under salt-fog test, specimens mixed with silicone oil could suppress leakage current development. It was thought that silicone oil mixed into cycloaliphatic epoxy system could lead to lower the surface energy and to retain hydrophobic properties for a long time, which are desirable for outdoor performances.

  • PDF

1998 Future Directions (Engine Oil, Moter Oil)

  • Chai, Joseph
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1998.04a
    • /
    • pp.3-43
    • /
    • 1998
  • Technical and business transformations are reshaping the business of Diesel engine builders, Diesel lubricant marketers and additive companies. Key issues facing engine builders and end users under these transformations include: -Emission regulations -Vehicle operating costs -Evolving business environments With these challenges come opportunities. For equipment builders and lubricant marketers, these include: -Lubricants meeting global performance requirements -High value lubricant applications -Profitable new businesses

  • PDF

The Effects of Base Oil Quality on the Performance of GF-3 Engine Oil

  • Moon, Woo-Sik;Ryoo, Jae-Kon
    • KSTLE International Journal
    • /
    • v.3 no.1
    • /
    • pp.26-29
    • /
    • 2002
  • The International Lubricant Standardization and Approval Committee (ILSAC) GF-3 passenger car engine oil specification has been introduced commercially in July 2001. The new specification oil provides superior performance in terms of fuel economy, control of high temperature deposits, and oil consumption. These enhanced performances of GF-3 engine oil need high quality base oil as well as a better additive system. In this paper, the effect of base oil on various performances of ILSAC GF-3 engine oil was investigated. From the GF-3 sequence engine tests, Group III base oil shows better performance in fuel economy retention, oxidation and varnish control than combination of group III and group II or group III and group 1.

A Study On the Application of VHVI Base Oil - Hydraulic Fluid for Construction Equipment (VHVI 기유의 제품 적용 기술에 관한 연구 - 건설 중장비용 유압유)

  • 권완섭;문우식;윤한희;김경웅
    • Tribology and Lubricants
    • /
    • v.20 no.1
    • /
    • pp.33-40
    • /
    • 2004
  • This study represents the newly advanced formulation of hydraulic fluids for extended drain interval and introduces the performance results of used oil samples from various excavators. The used oil samples, in this paper, show that there is a sharp change in viscosity drop and moderate additive depletion when viscosity index of hydraulic oil is very high. For the extension of hydraulic fluid life, it is necessary to improve the stability of viscosity and oxidation. New target properties from the used oil analysis were proposed for extended life. Performance of newly developed hydraulic oil based on used oil analysis is compared with previously used one. The properties of new formulation are the viscosity index of 140 and improved thermal stability consists of VHVI base oil. Field test results showed the possibility of extension of fluid life. Additionally, for development of high performance product, new required propertied and performances were discussed.

Effect of Polar Components on Phase Inversion Temperatures in Systems Containing Nonionic Surfactants and Nonpolar Oils (비이온성 계면활성제, 비극성 오일을 포함한 계에서의 극성 성분의 Phase Inversion Temperature에 대한 영향)

  • Lim, Jong-Choo;Mori, Fuyuhiko
    • Applied Chemistry for Engineering
    • /
    • v.5 no.2
    • /
    • pp.274-284
    • /
    • 1994
  • Phase Inversion Temperature (PIT) measurements showed that the addition of polar components such as oleyl alcohol and oleic acid to the system comprising n-dodecylpentaoxyethylene monoether ($C_{12}E_5$), nonpolar oil (n-hexadecane) and water produced large reductions in the PIT. The PIT was lowered as the additive-to-surfactant ratio in the surfactant films in the microemulsion phase was increased. Another dramatic effect of additive was the manner in which it affects the volume of the microemulsion phase at the PIT of the oil and water solubilization characteristics. Microemulsion phase volume was increased rapidly with decreasing PIT, i.e., with increasing amounts of additive in the system. Also with a decrease in PIT, the solubilization parameters of both oil and water in the microemulsion phase were strikingly increased. Even though soil removal data were not available for the conditions where our results obtained, PIT measurement seems a useful starting point for estimating conditions when middle-phase microemulsion formation and its associated high solubilization of oil can be expected.

  • PDF

A Study on the Friction and Wear Characteristics Engine Oil with Mo-DTP and Zn-DTP (Mo-DTP와 Zn-DTP를 혼합 첨가한 엔진 오일의 마찰 마모특성에 관한 연구)

  • 김종호;강석춘;정근우;조원오
    • Tribology and Lubricants
    • /
    • v.7 no.1
    • /
    • pp.46-54
    • /
    • 1991
  • As the additives of engine oil, Mo-DTP and Zn-DTP were studied by experimental works. These additives were added to the engine oil with various ratios, which was an attempt to find out the best ratio at which the wear and friction can be reduced effectively; Mo-DTP is belived to be able to decrease the frictioh of the sliding metal, while Zn-DTP is known as a very stable additive for oxidation at high temperature in addition to the good antiwear property. This study showed that the optimum addition ratio of Mo-DTP and Zn-DTP is 3:2. This oil made it possible to slide steel with minimum wear and low friction over various lovels of load at moderate temperature. But as the oil temperature increased, the wear slid with Mo-DTP oil was increased more. The reason of this result was that Mo-DTP deteriorated the property of oil at high temperature by the higher oxidation and viscosity of Mo-DTP oil than that of Zn-DTP oil.