• Title/Summary/Keyword: additive functional equation

Search Result 104, Processing Time 0.024 seconds

HOMOMORPHISMS IN PROPER LIE CQ*-ALGEBRAS

  • Lee, Jung Rye;Shin, Dong Yun
    • Korean Journal of Mathematics
    • /
    • v.19 no.1
    • /
    • pp.87-99
    • /
    • 2011
  • Using the Hyers-Ulam-Rassias stability method of functional equations, we investigate homomorphisms in proper $CQ^*$-algebras and proper Lie $CQ^*$-algebras, and derivations on proper $CQ^*$-algebras and proper Lie $CQ^*$-algebras associated with the following functional equation $$\frac{1}{k}f(kx+ky+kz)=f(x)+f(y)+f(z)$$ for a fixed positive integer $k$.

FUZZY ALMOST q-CUBIC FUNCTIONAL EQATIONS

  • Kim, ChangIl
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.30 no.2
    • /
    • pp.239-249
    • /
    • 2017
  • In this paper, we approximate a fuzzy almost cubic function by a cubic function in a fuzzy sense. Indeed, we investigate solutions of the following cubic functional equation $$3f(kx+y)+3f(kx-y)-kf(x+2y)-2kf(x-y)-3k(2k^2-1)f(x)+6kf(y)=0$$. and prove the generalized Hyers-Ulam stability for it in fuzzy Banach spaces.

A General Uniqueness Theorem concerning the Stability of AQCQ Type Functional Equations

  • Lee, Yang-Hi;Jung, Soon-Mo
    • Kyungpook Mathematical Journal
    • /
    • v.58 no.2
    • /
    • pp.291-305
    • /
    • 2018
  • In this paper, we prove a general uniqueness theorem which is useful for proving the uniqueness of the relevant additive mapping, quadratic mapping, cubic mapping, quartic mapping, or the additive-quadratic-cubic-quartic mapping when we investigate the (generalized) Hyers-Ulam stability.

A FIXED POINT APPROACH TO THE STABILITY OF THE ADDITIVE-CUBIC FUNCTIONAL EQUATIONS

  • Jin, Sun-Sook;Lee, Yang-Hi
    • Honam Mathematical Journal
    • /
    • v.42 no.3
    • /
    • pp.449-460
    • /
    • 2020
  • In this paper, we investigate the stability of the additive-cubic functional equations f(x+ky)+f(x-ky)-k2 f(x+y)-k2 f(x-y)+(k2-1)f(x) - (k2-1)f(-x) = 0, f(x+ky)-f(ky-x)-k2 f(x+y)+k2 f(y-x)+2(k2-1)f(x)= 0, f(kx+y)+f(kx-y)-kf(x+y)-kf(x-y)-2f(kx)+2kf(x)= 0 by using the fixed point theory in the sense of L. Cădariu and V. Radu.

CAUCHY-RASSIAS STABILITY OF A GENERALIZED ADDITIVE MAPPING IN BANACH MODULES AND ISOMORPHISMS IN C*-ALGEBRAS

  • Shin, Dong Yun;Park, Choonkil
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.24 no.4
    • /
    • pp.617-630
    • /
    • 2011
  • Let X, Y be vector spaces, and let r be 2 or 4. It is shown that if an odd mapping $f:X{\rightarrow}Y$ satisfies the functional equation $${\hspace{50}}rf(\frac{\sum_{j=1}^{d}\;x_j} {r})+\;{\sum\limits_{\iota(j)=0,1 \atop {\sum_{j=1}^{d}}\;{\iota}(j)=l}}\;rf(\frac{\sum_{j=1}^{d}{(-1)^{\iota(j)}x_j}}{r}) \\({\ddag}){\hspace{160}}=(_{d-1}C_l-_{d-1}C_{l-1}+1)\;{\sum\limits_{j=1}^{d}\;f(x_j)}$$ then the odd mapping $f:X{\rightarrow}Y$ is additive, and we prove the Cauchy-Rassias stability of the functional equation in Banach modules over a unital $C^*$-algebra. As an application, we show that every almost linear bijection $h:{\mathcal{A}}{\rightarrow}{\mathcal{B}}$ of a unital $C^*$-algebra ${\mathcal{A}}$ onto a unital $C^*$-algebra ${\mathcal{B}}$ is a $C^*$-algebra isomorphism when $h(2^nuy)=h(2^nu)h(y)$ for all unitaries $u{\in}{\mathcal{A}}$, all $y{\in}{\mathcal{A}}$, and $n=0,1,2,{\cdots}$.

APPROXIMATION OF CAUCHY ADDITIVE MAPPINGS

  • Roh, Jai-Ok;Shin, Hui-Joung
    • Bulletin of the Korean Mathematical Society
    • /
    • v.44 no.4
    • /
    • pp.851-860
    • /
    • 2007
  • In this paper, we prove that a function satisfying the following inequality $${\parallel}f(x)+2f(y)+2f(z){\parallel}{\leq}{\parallel}2f(\frac{x}{2}+y+z){\parallel}+{\epsilon}({\parallel}x{\parallel}^r{\cdot}{\parallel}y{\parallel}^r{\cdot}{\parallel}z{\parallel}^r)$$ for all x, y, z ${\in}$ X and for $\epsilon{\geq}0$, is Cauchy additive. Moreover, we will investigate for the stability in Banach spaces.

ON AN ADDITIVE FUNCTIONAL INEQUALITY IN NORMED MODULES OVER A $C^*$-ALGEBRA

  • An, Jong-Su
    • The Pure and Applied Mathematics
    • /
    • v.15 no.4
    • /
    • pp.393-400
    • /
    • 2008
  • In this paper, we investigate the following additive functional inequality (0.1) ||f(x)+f(y)+f(z)+f(w)||${\leq}$||f(x+y)+f(z+w)|| in normed modules over a $C^*$-algebra. This is applied to understand homomor-phisms in $C^*$-algebra. Moreover, we prove the generalized Hyers-Ulam stability of the functional inequality (0.2) ||f(x)+f(y)+f(z)f(w)||${\leq}$||f(x+y+z+w)||+${\theta}||x||^p||y||^p||z||^p||w||^p$ in real Banach spaces, where ${\theta}$, p are positive real numbers with $4p{\neq}1$.

  • PDF

SOLUTION AND STABILITY OF MIXED TYPE FUNCTIONAL EQUATIONS

  • Jun, Kil-Woung;Jung, Il-Sook;Kim, Hark-Mahn
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.22 no.4
    • /
    • pp.815-830
    • /
    • 2009
  • In this paper we establish the general solution of the following functional equation with mixed type of quadratic and additive mappings f(mx+y)+f(mx-y)+2f(x)=f(x+y)+f(x-y)+2f(mx), where $m{\geq}2$ is a positive integer, and then investigate the generalized Hyers-Ulam stability of this equation in quasi-Banach spaces.

  • PDF