• Title/Summary/Keyword: additional pressure

Search Result 780, Processing Time 0.024 seconds

The Relationship of Risk Assessment Using Braden Scale and Development of Pressure Sore in Neurologic Intensive Care Unit (Braden scale을 이용한 신경외과 중환자의 욕창 위험 요인 사정과 욕창 발생과의 관계)

  • Lee, Jong-Kyung
    • Korean Journal of Adult Nursing
    • /
    • v.15 no.2
    • /
    • pp.267-277
    • /
    • 2003
  • Purpose: The purpose of this study was to evaluate the applicability of braden scale to assess pressure ulcer risk patients and to identify additional risk factors of pressure sores in an neurologic intensive care unit. Method: The subjects of this study were 66 patients in neurologic intensive care units. Data was prospectively collected from Sep. to Dec., 2002. Data were analyzed by mean, percentage, t-test, chi-square, discriminant analysis using Spss pc+. Result: The results of this study were as follows: 1) There was a significant difference between scoring of braden scale and pressure ulcer development. The subscales that predicted pressure ulcer development using braden scale only were sensory perception, moisture, mobility, friction & shear. By using these subscales, sensitivity was 86.7%, and specificity was 61.1%, and total hit ratio was 72.7%. 2) Additional pressure ulcer risk factors which showed significance for discriminating two group were protein, albumin, gender, level of consciousness, pattern of bowel elimination. By using the combination of these additional risk factors in addition to the braden scale, total hit ratio increased to 84.8%. Conclusion: This data suggest that albumin, protein, gender, level of consciousness, pattern of bowel elimination in addition to the braden scale should be included in the pressure sore assessment tool.

  • PDF

The Evaluation of an additional Weight Shoe's Function developed for the Improvement of Aerobic Capacity (유산소 운동능력 향상을 위한 중량물 부가 신발의 기능성 평가)

  • Kwak, Chang-Soo;Kim, Hee-Suk
    • Korean Journal of Applied Biomechanics
    • /
    • v.14 no.3
    • /
    • pp.67-82
    • /
    • 2004
  • The purpose of this study was to evaluate the function and the safety of an additional weight shoe developed for the improvement of aerobic capacity, and to improve some problems found by subject's test for an additional weight shoe. The subjects employed for this study were 10 college students. 4 video cameras, AMTI force platform and Pedar insole pressure distribution measurement device were used to analyze foot motions. The results of the study were as follows: 1 The initial achilles tendon angle and initial rearfoot pronation angle of an additional weight shoe during walking were 183.7 deg and 2.33 deg, respectively, and smaller than a barefoot condition. Maximum achilles tendon angle and the angular displacement of achilles tendon angle were 185.35 deg and 4.21 deg respectively, and smaller than barefoot condition. Thus rearfoot stability variables were within the permission value for safety. 2. Maximal anterior posterior ground reaction force of additional weight shoe was appeared to be 1.01-1.2 B.W., and was bigger than a barefoot condition. The time to MAPGRF of an additional weight shoe was longer than a barefoot condition. Maximal vertical ground reaction force of additional weight shoe was appeared to be 2.3-2.7 B.W., and was bigger than a barefoot condition in propulsive force region. But A barefoot condition was bigger in braking force region. The time to MVGRF of an additional weight shoe was longer than a barefoot condition. 3. Regional peak pressure was bigger in medial region than in lateral region in contrast to conventional running shoes. The instant of regional peak pressure was M1-M2-M7-M4-M6-M5 -M3, and differed form conventional running shoes. Regional Impulse was shown to be abnormal patterns. There were no evidences that an additional weight shoe would have function and safety problems through the analysis of rearfoot control and ground reaction force during walking. However, There appeared to have small problem in pressure distribution. It was considered that it would be possible to redesign the inner geometry. This study could not find out safety on human body and exercise effects because of short term research period. Therefore long term study on subject's test would be necessary in the future study.

Unsteady Pressure Oscillations of Liquefied Paraffin Wax Combustion in Hybrid Rocket (파라핀-왁스를 사용하는 하이브리드 로켓 연소의 비정상 압력 진동)

  • Hyun, Wonjeong;Lee, Changjin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.5
    • /
    • pp.339-347
    • /
    • 2022
  • The post chamber in hybrid rocket is installed to induce additional increase in combustion enthalpy by allowing continuous burning of the liquefied fuels. When paraffin wax fuel is used, unsteady pressure oscillations are observed only at the beginning of combustion. This study intends to investigate the effect of additional combustion of liquefied fuel droplets on the occurrence of unsteady pressure fluctuations. For this, the combustion in post-chamber was visualized and image analysis using POD(Proper Orthogonal Decomposition) technique was performed. In addition, the hypothesis was proposed on the occurrence of unsteady pressure oscillations by identifying the modes including the behavior of droplets through mode reconstruction. Conducting a series of combustion tests, the amount of liquefied fuel flowing into the post chamber and the generation of fuel droplets were controlled. Also, the changes in frequency characteristic of unsteady pressure oscillation were monitored. As a result, the unsteady pressure oscillations observed in paraffin wax combustion were the result of additional combustion of fuel droplets generated in the post chamber.

A study on the bonding strength of co-cured T800/epoxy composite-aluminum single lap joint according to the forming and additional pressures (동시 경화법으로 제조된 T800/에폭시 복합재료-알루미늄 단면겹치기조인트의 성형압력 및 부가압력에 따른 접착강도에 관한 연구)

  • Son, Dae-Sung;Bae, Ji-Hun;Chang, Seung-Hwan
    • Composites Research
    • /
    • v.24 no.5
    • /
    • pp.23-28
    • /
    • 2011
  • In this paper, the bonding strengths of co-cured T800 carbon/epoxy composite-aluminum single lap joints with and without additional pressures were investigated using the pressure information induced by the fiber tension during a filament winding process. The specimens of all the tests were fabricated by an autoclave vacuum bag de-gassing molding being controlled forming pressures (absolute pressures of 0.1MPa, 0.3MPa and 0.7MPa including vacuum). A special device which can act uniform additional pressures on the joining part of the single lap joint specimen was designed to measure the bonding strengths of composite-aluminum liners of type III hydrogen pressure vessel fabricated by a filament winding process. After the three different additional pressures (absolute pressures of 0.1MPa, 0.3MPa and 0.7MPa) were applied to the specimens the effect of the additional pressures on the bonding strengths of the co-cured single-lap joints were evaluated.

Propeller Induced Pressure on Bottom Surface of Stern -A Method of Seperation from the Measured Pressure with Pressure Transducer attached on Hull Surface. (선미선저(船尾船底)에 미치는 추진기(推進器) 유기압력(誘起壓力) -선체표면(船體表面)에 붙인 압력변환기(壓力變換器)로 계측(計測)되는 압력(壓力)으로부터의 한 분리방법(分離方法)-)

  • Kyu-Jong,Cho
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.7 no.1
    • /
    • pp.1-12
    • /
    • 1970
  • The propeller induced pressure fluctuation around a ship's stern is one of the interesting problems from viewpoints of the noise and vibration. Most of the experimental works on the subject employ pressure transducer attached on hull surface near the propeller. In the technique, the measured pressure includes the hydrodynamic pressure transducer attached, if they exit. Hence, the separation of the additional pressure due to vibration from the measured pressure is essential for the determination of true values of the propeller induced pressure. In this paper, to contribute to the separation method, the author investigated the additional hydrodynamic pressure as below, based on the numerical calculation. (1) Hydrodynamic pressure on the body surface of two dimensional cylinders of some mathematical sections such as ellipse, rectangle, Lewis form of hypotrocoidal charactor and curvilinear-element section with chines oscillating vertically at high frequency in a free surface. (2) Hydrodynamic pressure on the surface of the shell plate in local vibration in an ideal fluid.

  • PDF

Study of Convex Cyclone with Continuous Curve (연속적인 곡선으로 정의 되는 볼록한 형상의 사이클론에 대한 연구)

  • Heo, Kwang-Su;Seol, Seoung-Yun;Li, Zhen-Zhe
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2757-2762
    • /
    • 2007
  • A cyclone design concept named Convex cyclone was developed to reduce pressure losses. Contrary to conventional cylinder-on-con type cyclone, inner wall of Convex cyclone are defined with a continuous curve and it has convex shape body. The discontinuity of inner diameter variation rate of cylinder-on-con type cyclone cause additional pressure loss. Continuous wall of Convex cyclone prevent additional pressure loss. In order to verify Convex cyclone design concept, we make a comparative experiments between Stairmand HE and Convex cyclone. Experimental Convex cyclone designed based on Stairmand HE model, and inner wall are defined with circular arch. The experimental result clearly shows that Convex cyclone can achieve maximum 50% pressure loss reduction with a few percent of collection efficiency drop. In addition, the experimental results indicated the existence of optimum convexity, minimum pressure loss, of cyclone wall.

  • PDF

Numerical Study on Mixing Performance of Straight Groove Micromixers

  • Hossain, Shakhawat;Kim, Kwang-Yong
    • International Journal of Fluid Machinery and Systems
    • /
    • v.3 no.3
    • /
    • pp.227-234
    • /
    • 2010
  • Numerical analyses have been performed to investigate the effects of geometric parameters of a straight groove micromixer on mixing performance and pressure drop. Three-dimensional Navier-Stokes equations with two working fluids, water and ethanol have been used to calculate mixing index and pressure drop. A parametric study has been carried out to find the effects of the number of grooves per cycle, arrangement of patterned walls, and additional grooves in triangular dead zones between half cycles of grooves. The three arrangements of patterned walls in a micromixer, i.e., single wall patterned, both walls patterned symmetrically, and both walls patterned asymmetrically, have been tested. The results indicate that as the number of grooves per cycle increases the mixing index increases and the pressure drop decreases. The microchannel with both walls patterned asymmetrically shows the best mixing performance among the three different arrangements of patterned walls. Additional grooves confirm the better mixing performance and lower pressure drop.

Effect of Zinc and Zirconium on Microstructure and Mechanical Property in Squeeze Cast Magnesium Alloy (용탕단조 마그네슘합금의 조직과 기계적 성질에 미치는 Zn과 Zr의 영향)

  • Choi, Young-Doo;Choi, Jung-Chul;Chang, Si-Young
    • Journal of Korea Foundry Society
    • /
    • v.19 no.5
    • /
    • pp.403-409
    • /
    • 1999
  • Mg-Zn-Zr ternary alloys containing 6wt% Zn and (0, 0.4, 0.6)wt% Zr, which is added for grain refinement, can be cast into complex shape by squeeze casting. The influence of Zn and Zr as additional elements on microstructure and mechanical characteristics is investigated by OM, SEM, WDX, XRD and microvickers hardness measurement. The microstructure of Mg-Zn-Zr alloys consists of primary ${\alpha}-Mg$ and MgZn eutectic compound between dendrites. The grain size is decreased from $136{\mu}m$ to $97\;{\mu}m$ by Zr addition, resulting in that the hardness is increased from 42Hv to 59Hv. Furthermore, the grain size is changed to $83{\beta}$ and the hardness is increased to 65Hv by additional infiltration pressure. These results indicate that the Zr addition and additional infiltration pressure are effective for grain refinement acting as an important factor to increase the hardness. The increment in hardness by the Zr addition is slightly larger than that by the additional infiltration pressure.

  • PDF

Analysis on the Pressure Rise Characteristics Caused by Movement of Linear and Rotary Stages using Air Bearings in High Vacuum Environment (고진공 환경용 공기베어링이 적용된 직선, 회전스테이지의 구동에 의한 압력증가 특성분석)

  • Kim, Gyung-Ho;Park, Chun-Hong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.8
    • /
    • pp.112-118
    • /
    • 2009
  • A pressure rise is generated while air bearing stages are moving in high vacuum environment. This study analyzed this pressure rise phenomenon theoretically and verified it experimentally using two different kinds of stages - linear and rotary air bearing stages. Results indicate that the pressure rise was caused by additional leakage resulting from stage velocity, along with adsorption and outgassing of gas molecules from the guide rail surface. Though tilting of the stage due to acceleration and deceleration reached several micrometers, it had a negligible effect on pressure rise because the tilting time was very short. Therefore, a rotary air bearing stage showed much less pressure rise than a linear stage because the rotary stage theoretically has nothing to do with the above causes. Additional leakage caused by stage velocity was inevitable if the stage had movements, but pressure rise caused by adsorption and outgassing could be suppressed by improving the surface quality to reduce real surface area, and by coating the guide rail surface with titanium nitride (TiN) which has less adhesion probability of gas molecules. The results also indicate that the pressure rise increased when the air bearing stage operated under high vacuum conditions.

THE EVALUATION OF PERIODONTAL LIGAMENT CELLS OF RAT TEETH AFTER LOW-TEMPERATURE PRESERVATION UNDER HIGH PRESSURE (고압-저온 보관에 따른 쥐 치아 치주인대세포의 활성도 평가)

  • Chung, Jin-Ho;Kim, Jin;Choi, Seong-Ho;Kim, Eui-Seong;Park, Ji-Yong;Lee, Seung-Jong
    • Restorative Dentistry and Endodontics
    • /
    • v.35 no.4
    • /
    • pp.285-294
    • /
    • 2010
  • The purpose of this study was to evaluate the viability of periodontal ligament cells of rat teeth after low-temperature preservation under high pressure by means of MTT assay, WST-1 assay. 12 teeth of Sprague-Dawley white female rats of 4 week-old were used for each group. Both side of the first and second maxillary molars were extracted as atraumatically as possible under tiletamine anesthesia. The experimental groups were group 1 (Immediate extraction), group 2 (Slow freezing under pressure of 3 MPa), group 3 (Slow freezing under pressure of 2 MPa), group 4 (Slow freezing under no additional pressure), group 5 (Rapid freezing in liquid nitrogen under pressure of 2 MPa), group 6 (Rapid freezing in liquid nitrogen under no additional pressure), group 7 (low-temperature preservation at $0^{\circ}C$ under pressure of 2 MPa), group 8 (low-temperature preservation at $0^{\circ}C$ under no additional pressure), group 9 (low-temperature preservation at $-5^{\circ}C$ under pressure of 90 MPa). F-medium and 10% DMSO were used as preservation medium and cryo-protectant. For cryo-preservation groups, thawing was performed in $37^{\circ}C$ water bath, then MTT assay, WST-1 assay were processed. One way ANOVA and Tukey HSD method were performed at the 95% level of confidence. The values of optical density obtained by MTT assay and WST-1 were divided by the values of eosin staining for tissue volume standardization. In both MTT and WST-1 assay, group 7 ($0^{\circ}C$/2 MPa) showed higher viability of periodontal ligament cells than other group (2-6, 8) and this was statistically significant (p < 0.05), but showed lower viability than group 1, immediate extraction group (no statistical significance). By the results of this study, low-temperature preservation at $0^{\circ}C$ under pressure of 2 MPa suggest the possibility for long term preservation of teeth.