• Title/Summary/Keyword: additional materials

Search Result 1,882, Processing Time 0.026 seconds

Improvements in the Physical Properties of Hanji by Using Red Algae Pulp

  • Seo, Yung-Bum;Kim, Young-Wook;Lee, Min-Woo;Jung, Sun-Young
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.41 no.5
    • /
    • pp.33-37
    • /
    • 2009
  • Hanji is a traditional Korean handmade paper, made of bast fibers of the paper mulberry. Its fiber furnish is much more expensive than wood fiber furnish. Hanji with a low basis weight requires additional opacity and smoothness for better writing and printing. Filler such as calcium carbonate can not be used to raise the opacity of Hanji because of its low retention in low basis weight paper and the high freeness of the Hanji fiber furnish. Addition of red algae pulp, which is prepared from marine red algae to the Hanji fiber furnish negated retention problems happening in the case of mineral filler addition, and produced a substantial improvement in the opacity and smoothness of Hanji. The higher retention was due to the much larger size of the red algae fibers compared to the mineral fillers. The improvement in opacity and smoothness were also due to the shape of the red algae fibers: that red algae fibers are narrower in widths and shorter in lengths than wood fibers results in increased surface area and smoothness.

A Comparative Study of Recognition Rate of Color QR Code Printed on Tyvek and Cotton Material

  • Park, Suhrin
    • Journal of Fashion Business
    • /
    • v.21 no.3
    • /
    • pp.14-28
    • /
    • 2017
  • This purpose of this study to analyze effect material properties have on change in QR code recognition rate according to change of materials by comparing recognition rate of color QR code. QR code applied to textile materials has the advantage of being washable and being applicable to lost child prevention goods or clothes or a person with dementia through record of information relating to the material or input of additional information, differently from QR code printed on the conventional paper. An effective method of entering QR code in textile materials is Digital Textile Printing(DTP), that facilitates printing by rapidly applying diverse information, and small quantity production. It is possible to tailor various QR codes according to use. Regarding samples to use, cotton material used in clothing products and Tyvek material recently applied to clothing and related products were selected. Reactive dyes were used for cotton, pigment was used for Tyvek, and QR code was printed with an inkjet printer by direct printing method. Printing methods and surface textures are different between cotton and Tyvek. It was revealed that consequent print results and results of recognition rate were different. Regarding color to be printed, 2015 S/S - 2017 S/S color presented by Pantone was used. Color combination affected recognition rate of color QR code. Understanding color combination, material properties and print characteristics may be helpful in increasing recognition rate of color QR code, and may contribute to usability of color QR code applied to textile materials in the future.

Fabrication of Nano-Channeled Tin Oxide Film Electrode and Evaluation of Its Electrochemical Properties (나노 채널 구조를 가진 산화 주석 박막 전극 제조 및 전기화학적 특성 평가)

  • Park, Su-Jin;Shin, Heon-Cheol
    • Korean Journal of Materials Research
    • /
    • v.22 no.1
    • /
    • pp.1-7
    • /
    • 2012
  • Thin film electrode consisting purely of porous anodic tin oxide with well-defined nano-channeled structure was fabricated for the first time and its electrochemical properties were investigated for application to an anode in a rechargeable lithium battery. To prepare the thin film electrode, first, a bi-layer of porous anodic tin oxides with well-defined nano-channels and discrete nano-channels with lots of lateral micro-cracks was prepared by pulsed and continuous anodization processes, respectively. Subsequent to the Cu coating on the layer, well-defined nano-channeled tin oxide was mechanically separated from the specimen, leading to an electrode comprised of porous tin oxide and a Cu current collector. The porous tin oxide nearly maintained its initial nano-structured character in spite of there being a series of fabrication steps. The resulting tin oxide film electrode reacted reversibly with lithium as an anode in a rechargeable lithium battery. Moreover, the tin oxide showed far more enhanced cycling stability than that of powders obtained from anodic tin oxides, strongly indicating that this thin film electrode is mechanically more stable against cycling-induced internal stress. In spite of the enhanced cycling stability, however, the reduction in the initial irreversible capacity and additional improvement of cycling stability are still needed to allow for practical use.

Fine-Pitch Solder on Pad Process for Microbump Interconnection

  • Bae, Hyun-Cheol;Lee, Haksun;Choi, Kwang-Seong;Eom, Yong-Sung
    • ETRI Journal
    • /
    • v.35 no.6
    • /
    • pp.1152-1155
    • /
    • 2013
  • A cost-effective and simple solder on pad (SoP) process is proposed for a fine-pitch microbump interconnection. A novel solder bump maker (SBM) material is applied to form a 60-${\mu}m$ pitch SoP. SBM, which is composed of ternary Sn3.0Ag0.5Cu (SAC305) solder powder and a polymer resin, is a paste material used to perform a fine-pitch SoP through a screen printing method. By optimizing the volumetric ratio of the resin, deoxidizing agent, and SAC305 solder powder, the oxide layers on the solder powder and Cu pads are successfully removed during the bumping process without additional treatment or equipment. Test vehicles with a daisy chain pattern are fabricated to develop the fine-pitch SoP process and evaluate the fine-pitch interconnection. The fabricated Si chip has 6,724 bumps with a 45-${\mu}m$ diameter and 60-${\mu}m$ pitch. The chip is flip chip bonded with a Si substrate using an underfill material with fluxing features. Using the fluxing underfill material is advantageous since it eliminates the flux cleaning process and capillary flow process of the underfill. The optimized bonding process is validated through an electrical characterization of the daisy chain pattern. This work is the first report on a successful operation of a fine-pitch SoP and microbump interconnection using a screen printing process.

Method of Object Identification Using Joint Data of Multi-Joint Robotic Gripper for Bin-picking (빈-피킹을 위한 다관절 로봇 그리퍼의 관절 데이터를 이용한 물체 인식 기법)

  • Park, Jongwoo;Park, Chanhun;Park, Dong Il;Kim, DooHyung
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.25 no.6
    • /
    • pp.522-531
    • /
    • 2016
  • In this study, we propose an object identification method for bin-picking developed for industrial robots. We identify the grasp posture and the associated geometric parameters of grasp objects using the joint data of a robotic gripper. Prior to grasp identification, we analyze the grasping motion in a low-dimensional space using principle component analysis (PCA) to reduce the dimensions. We collected the joint data from a human hand to demonstrate the grasp-identification algorithm. For data acquisition of the human grasp data, we conducted additional research on the motion characteristics of a human hand. We explain the method for using the algorithm of grasp identification for bin-picking. Finally, we present a subject for future research using our proposed algorithm of grasp model and identification.

Microstructure of Tool Steel Castings for Cold-Work Die Inserts (냉간금형 인서트(insert)용 주강의 미세조직)

  • Kang, Jun-Yun;Park, Jun-Young;Kim, Hoyoung;Kim, Byunghwan
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.30 no.5
    • /
    • pp.197-206
    • /
    • 2017
  • The microstructure of a high-carbon and high-chromium cast steel (HK700) for cold-work die inserts was analyzed by advanced scanning electron microscopy. A continuous network of primary $M_7C_3$ carbide was developed among austenitic matrix after casting. A small amount of $M_2C$ was added to the carbide network owing to the enrichment of Mo and W during the solidification. After quenching in which the austenitization was performed at $1030^{\circ}C$ and double tempering at $520^{\circ}C$, the network structure of $M_7C_3$ was preserved while most of the matrix was transformed to martensite because of additional carbide precipitation. The $M_2C$ in the as-cast microstructure was also transformed to $M_6C$ due to its instability. The continuous network of coarse carbides owing to the absence of hot-working had little influence on the hardness after quenching and tempering, whereas it resulted in severe brittleness upon flexural loading.

Properties of the Natural and CVD Synthetic Diamonds for Identification (천연과 CVD 합성 다이아몬드의 감별을 위한 물성 연구)

  • Kim, Yunwoo;Song, Jeongho;Noh, Yunyoung;Song, Ohsung
    • Journal of the Korean Ceramic Society
    • /
    • v.51 no.4
    • /
    • pp.350-356
    • /
    • 2014
  • Recently, Chemical Vapor Deposition (CVD) synthetic diamonds have been introduced to the jewelry gem market, as CVD technology has been making considerable advances. Unfortunately, CVD diamonds are not distinguishable from natural diamonds when using the conventional gemological characterization method. Therefore, we need to develop a new identification method that is non-destructive, fast, and inexpensive. In our study, we employed optical microscopy and spectroscopy techniques, including Fourier transform infra-red (FT-IR), UV-VIS-NIR, photoluminescence (PL), micro Raman, and cathodoluminescent (CL) spectroscopy, to determine the differences between a natural diamond (0.30 cts) and a CVD diamond (0.43 cts). The identification of a CVD diamond was difficult when using standard gemological techniques, UV-VIS-NIR, or micro-Raman spectroscopy. However, a CVD diamond could be identified using a FT-IR by the Type II peaks. In addition, we identified a CVD diamond conclusively with the uneven UV fluorescent local bands, additional satellite PL peaks, longer phosphorescence life time, and uneven streaks in the CL images. Our results suggest that using FT-IR combined with UV fluorescent images, PL, and CL analysis might be an appropriate method for identifying CVD diamonds.

Impedance Matching of Electrically Small Antenna with Ni-Zn Ferrite Film

  • Lee, Jaejin;Hong, Yang-Ki;Lee, Woncheol;Park, Jihoon
    • Journal of Magnetics
    • /
    • v.18 no.4
    • /
    • pp.428-431
    • /
    • 2013
  • We demonstrate that a partial loading of $Ni_{0.5}Zn_{0.5}Fe_2O_4$ (Ni-Zn ferrite) film remarkably improves impedance matching of electrically small $Ba_3Co_2Fe_{24}O_{41}$ ($Co_2Z$) hexaferrite antenna. A 3 ${\mu}m$ thick Ni-Zn ferrite film was deposited on a silicon wafer by the electrophoresis deposition process and post-annealed at $400^{\circ}C$. The fabricated Ni-Zn ferrite film has saturation magnetization of $268emu/cm^3$ and coercivity of 89 Oe. A partial loading of the Ni-Zn ferrite film on the $Co_2Z$ hexaferrite helical antenna increases antenna return loss to 24.7 dB from 9.0 dB of the $Co_2Z$ antenna. Experimental results show that impedance matching and maximum input power transmission to the antenna without additional matching elements can be realized, while keeping almost the same size as the $Co_2Z$ antenna size.

Evaluation of Corrosion Tendency for S355ML Steel with Seawater Temperature (해수 온도에 따른 S355ML 강재의 부식 경향 평가)

  • Jang, Seok Ki;Lee, Seung Jun;Park, Jae Cheul;Kim, Seong Jong
    • Corrosion Science and Technology
    • /
    • v.14 no.5
    • /
    • pp.232-238
    • /
    • 2015
  • Corrosion is of greatest concern for metallic materials exposed to corrosive seawater or aggressive marine atmospheres. Marine structures and components made of metallic materials incur an initial cost and additional large costs for corrosion control and maintenance. There have been worldwide efforts to minimize marine corrosion and extend service life of the materials. It is believed that various factors are associated with corrosion of marine grade metallic materials, particularly the temperature of the solution affecting the corrosion rate by changing dissolved oxygen solubility and concentrations of chloride. In the present study, the electrochemical characteristics of S355ML steel are investigated to identify corrosion acceleration tendencies with changes in solution temperature under marine environments. It was found that increasing seawater temperature, promoted not only activation of chloride ion transfer, but also the formation of porous $Fe(OH)_3$ or $Fe_2O_3$, leading to the acceleration of corrosion.

Durable Press Finish of Cotton Fabric Using Malic Acid as a Crosslinker

  • Kim, Byung-Hak;Jang, Jinho;Ko, Sohk-Won
    • Fibers and Polymers
    • /
    • v.1 no.2
    • /
    • pp.116-121
    • /
    • 2000
  • It has been considered that malic acid, $\alpha$-hydroky succinic acid, could not form crosslinks in the cellulosic materials unless activated by other polycarboxylic acids such as butanetetracarboxylic acid or citric acid because there are only two carboxylic acids per molecule available fur the formation of one anhydride intermediate. However we found that the dicarboxylic malic acid with sodium hypophosphite catalyst without the addition of other crosslinkers was able to improve wrinkle resistance of cotton up to $294^{\circ}$(dry WRA) and $285^{\circ}$ (wet WRA), which is a measure of crosslinking level in cotton. $^1$H FT-NMR, FT-IR and GPC analysis indicated the in-situ formation of an trimeric $\alpha$, $\beta$-rnalic acid with a composition of 1:3 through the esterification between hydroxyl group and one of carboxylic groups in malic acid during curing. The crosslinking of cotton was attributed to the trimeric $\alpha$, $\beta$-malic acid, a tetracarboxylic acid, which can form two anhydride rings during curing. The influence of crosslinking conditions such as concentrations of malic acid and catalyst, pH of the formulation bath, and curing temperature were investigated in terms of imparted wrinkle resistance and whiteness. The addition of reactive polyurethane resin in the formulation slightly increased the mechanical strength retention of crosslinked fabric coupled with additional increase in wrinkle resistance.

  • PDF